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Abstract

Face super-resolution reconstruction technology aims to recover high-resolution face images from
low-resolution inputs. However, its core challenge lies in the severe loss of high-frequency details
during large-scale upscaling. Although existing methods have attempted to incorporate facial prior
information (such as keypoints and parsing maps) to provide structural constraints, they still
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commonly suffer from issues like model complexity and insufficient feature utilization. This paper
proposes a dual-stage face super-resolution network based on the fusion of an Efficient Channel
Attention mechanism and structured priors. The core innovations of our method are as follows: 1)
Facial edge maps and facial parsing maps are utilized as complementary structural prior infor-
mation to jointly guide the reconstruction process, enabling the precise recovery of facial geometry.
2) The Efficient Channel Attention (ECA) module is introduced at critical positions within the net-
work. This module enhances the utilization of key features with nearly zero computational over-
head, effectively improving the recovery quality of texture details. Experiments on the CelebA Mask-
HQ and Helen datasets demonstrate that our method outperforms existing mainstream methods in
both subjective visual quality and objective metrics (PSNR/SSIM). Specifically, through systematic
ablation studies, we validate the superiority of the ECA module over other attention mechanisms
(e.g., SENet, CBAM) in terms of both performance and efficiency, as well as the synergistic enhance-
ment effect achieved by its combination with prior information.
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Figure 2. Spatial attention model
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Figure 3. Mixed attention model
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Figure 4. Efficient channel attention model
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Table 1. Effects of different attention mechanisms on network performance (in CelebA Mask-HQ dataset)
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Table 2. Synergistic analysis of prior information and attention mechanism
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Table 5. Evaluation results of different models on CelebA Mask-HQ and Helen datasets
%2 5. TEIHEEIZE CelebA Mask-HQ 1 Helen ##B&E FEITEMEER

Dataset Bicubic SRCNN EDSR URDGN FSRNet OURS
CelebA Mask-HQ 22.36/0.61 22.53/0.63 23.02/0.63 20.70/0.50 23.21/0.73 23.64/0.74
Helen 22.59/0.62 23.05/0.65 23.18/0.64 21.65/0.55 24.49/0.72 24.83/0.62
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Figure 12. Comparison diagram of different algorithms
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