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Abstract

The bipedal wheel-legged robot integrates the high-speed mobility of wheeled platforms with the
terrain adaptability of legged systems, exhibiting excellent motion performance in complex envi-
ronments. However, its dynamic stability is highly susceptible to external disturbances, posing
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significant challenges to control. To address this issue, this paper proposes an adaptive force-posi-
tion coupling model predictive control method for the motion control of bipedal wheel-legged ro-
bots. Based on the dynamic modeling of the torso and wheel-legged system, the method incorpo-
rates MPC into torso attitude control to achieve optimal distribution of attitude and active forces.
Subsequently, an impedance control strategy is employed to convert the optimal active forces into
joint torques, enabling precise control and dynamic adjustment of the wheel-legged system. Simu-
lation experiments on the TITA platform demonstrate that the proposed method ensures the sys-
tem’s stability and robustness under complex terrain and disturbance conditions.
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Figure 1. Three-dimensional model of a dual-wheel legged robot
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Table 1. Key structural parameters of the robot
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Figure 2. Robot coordinate system
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Figure 3. Wheel-leg structure of the robot
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Figure 4. Control framework
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Figure 5. Thrust perturbation experiment
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Figure 6. Thrust disturbance experiment line chart
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Figure 7. Slope experiment
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Figure 9. Continuous staircase experiment
B 9. ELEEHESII

e
=]
)

T
Roll-—— Pitch=——— Yaw

Euler angles(rad)
s o

S =2

T

|

|
=
o
=

T
1

-0, 2 1 1
W,
200
> 100 )
% 0 2

—100 [~

—200
8 9 10 11 12 13
Time (s)

Figure 10. Continuous staircase data plot
[E 10. EEHEEBIEE

FEARPPRORA, RUIRIR R G S A R BEAN R 75 R S8 7, 3 BRI T 1 SR A B ) 70 AR
BERFTIE A R, A MU ) E+2 Nm 2 (a3, JCH R 10 702 12 F a3 in il
WEAELTA 2 Nm, 58 s ) 2 B SEIR SO R A0 R, P 20 B S, SRV RIS R BT 00, ORFSAT AR E
Yo SCEGSRERN, HLas NAERIBOA S Fizshit, ZaMEshiEi b Bt ulth B ER e RE, RS
P05 T N R I TR, TR SRR TS I ST AR SN Eh AT RE S A R

5.2.3. dELEMa{L b B iS00G

ARG L AN T 2 SR S50 15 B L2 A a0 D0 B 4 DX 3 (PR 2 R D), IR HAE SR 503K
BSHIERE PRI EENAE . B 11 R EF, 6 R R BoRyLgs NI e BRI 5 m e .

X6 N IR 3T 2k B (39~42 8) S, SREGH [A] Ay 43 FP 4 49 Fb. B ER 9 RREL M Hi 28, Roll £ Pitch £+
Yaw ffEARE SR 0 /MBS, Roll i3 E 51 7£+0.005 rad AP, Pitch ffEEAFEEAE 0 fiiL, Yaw
B B S H A 2 A H+0.008 rad Yo I, IR HLAF ATE LI R h LA R EF B AR e, RHBILEE
MIFEIERAT N R RS . N i &, F] ihZAE 43 I BOH BLIEAEE 200 N BLE, Bl 5 PRk
WS E 150N A RasE s F)HhZR4ERErE 100N EF, shioh; F i@ BqRACr, wiike
i 22 Gt i A 46 7 R R PREIE B T, 2 S ORIEAR R (R SCHE Ja i s A A R A A0 ) 2 A 7E£0.2 Nm
AN EN, ANTE 45 FP & 47 FP IR LR 1Mo B, W E R I 0.3 Nm, 3R B 4 il 25 8 i o 7 0~ 16 4=

DOI: 10.12677/airr.2026.151020 207 PNER ST IR YN


https://doi.org/10.12677/airr.2026.151020

PRI, FER I

SEL, AT ERENE . SRIRSURRY], WA NAERFSHEsh TOU N LM BB, RehSE 57
Y L R S TR AR E , SRR T I AR AR I R AT P AR A R AN i R

i v

ol et S v
-l o

Figure 11. Unstructured terrain

11. dELEsfLit

0.010 T T

1
Roll—— Pitch

= Yaw
£ 0.005 E
h71

3

Y LN o DTN NG va
g 0.000 SR A e N
<

5}

= —0.005 .
m

_0 010 1 1 1 1 1

200

T T T T T . 0.8

F = i—r—r—a 7 J oo

FloN)

—100 [~

—200 [~

43 44 45

46 47 48 49
Time (s)

Figure 12. Unstructured terrain traversal data map

& 12. LSRR M EEE

6. &t

A e XU R AL A% A AE S A8 b (LSR8 S sl R i AL, 3 i 17— A i T AR T 4 )
(MPC) SRR B IE N AT - AL AR S LA 70 R AR HIME S o 12 R M i R T3 2, SEEL 1 & 2R
SRS IR BRI GRS T - AR & @RS 5 S NPT BRES, A BRI T R A

RERZIRSR: L A L EIVA:

FEAE I D5 T, ASCBOE TS IE s 2T UL Uk R AT S AR (1 2> R 1 ] &
gt, SEHL T M2 i BN B R R SR AT B PR I SR o 42 8] S5 R Il I MPC SR g fe f 3
N, FFAERE RIS h 45 5 B ) AR 5 R R BB R, B ORBLER AN AE R 2RI T AR

TEIBAT

FEA FLSR UG 70, A SCAE Webots & EEEE 1T XU RENLAS ABERL, JFITRE 1 i S 0ahmi b 5 5 &5t
TGN A S 5. SEIRAE SRR, Pl tHZ 1 7 VA 2 M sl 5 I 26 1 T S REPR 5 R I ISR

SENE SIS, DA E5 LAY, FEMR T 7HE i BT A,

UL 1t SR s (A R S e

DOI: 10.12677/airr.2026.151020

208 PNER ST IR YN


https://doi.org/10.12677/airr.2026.151020

MR, FER I

LRIk, ASCPTIR M AR B IE RN ) - AR S ERUNE RS RIFE A SR, 2 Ak

L NAEARSS AL h A g iz sl feflt 7 B REAl 5 TRE S % . KRR TR — BRIk E Hk
BT &, IR G RE STETE R, SCHUE = 2 R B RS ESHATRES -

SE

(1]
(2]

(3]

(4]

(5]

(6]

[7]

Liu, X., Sun, Y., Wen, S., Cao, K., Qi, Q., Zhang, X., et al. (2024) Development of Wheel-Legged Biped Robots: A
Review. Journal of Bionic Engineering, 21, 607-634. https://doi.org/10.1007/s42235-023-00468-1

Klemm, V., Morra, A., Gulich, L., Mannhart, D., Rohr, D., Kamel, M., et al. (2020) LQR-Assisted Whole-Body Control
of a Wheeled Bipedal Robot with Kinematic Loops. IEEE Robotics and Automation Letters, 5, 3745-3752.
https://doi.org/10.1109/Ira.2020.2979625

Li, X., Zhou, H., Zhang, S., Feng, H. and Fu, Y. (2019) WLR-II, a Hose-Less Hydraulic Wheel-Legged Robot. 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, 3-8 November 2019, 4339-4346.
https://doi.org/10.1109/iros40897.2019.8967935

Liu, T., Zhang, C., Song, S. and Meng, M.Q. (2019) Dynamic Height Balance Control for Bipedal Wheeled Robot Based
on ROS-Gazebo. 2019 IEEE International Conference on Robotics and Biomimetics (ROBIQ), Dali, 6-8 December 2019,
1875-1880. https://doi.org/10.1109/robio49542.2019.8961739

Wang, Y., Chen, T., Rong, X., Zhang, G., Li, Y. and Xin, Y. (2025) Design and Control of SKATER: A Wheeled-
Bipedal Robot with High-Speed Turning Robustness and Terrain Adaptability. IEEE/ASME Transactions on Mecha-
tronics, 30, 1310-1321. https://doi.org/10.1109/tmech.2024.3420390

Xin, Y., Chai, H., Li, Y., Rong, X,, Li, B. and Li, Y. (2019) Speed and Acceleration Control for a Two Wheel-Leg Robot
Based on Distributed Dynamic Model and Whole-Body Control. IEEE Access, 7, 180630-180639.
https://doi.org/10.1109/access.2019.2959333

FEALS, MK, S0, & BTFa8 il R HLEs NBRER T VA AL[I). B 301k 24k, 2023, 49(8): 1635-
1644.

DOI: 10.12677/airr.2026.151020 209 NTHE

ASHIRE YNk

D>~
>


https://doi.org/10.12677/airr.2026.151020
https://doi.org/10.1007/s42235-023-00468-1
https://doi.org/10.1109/lra.2020.2979625
https://doi.org/10.1109/iros40897.2019.8967935
https://doi.org/10.1109/robio49542.2019.8961739
https://doi.org/10.1109/tmech.2024.3420390
https://doi.org/10.1109/access.2019.2959333

	双轮腿机器人力位耦合建模与模型预测控制方法
	摘  要
	关键词
	Force-Position Coupling Modeling and Model Predictive Control Method for Bipedal Wheel-Legged Robots
	Abstract
	Keywords
	1. 引言
	2. 实验平台：TITA双轮腿机器人
	3. 控制挑战与动力学建模
	3.1. 机器人坐标系设定
	3.2. 躯干动力学建模
	3.3. 轮腿系统动力学建模

	4. 控制框架与实现方法
	4.1. 躯干姿态控制层
	4.2. 轮腿姿态控制层

	5. 实验验证
	5.1. 静态扰动响应实验
	5.2. 动态地形适应实验
	5.2.1. 斜坡爬升实验
	5.2.2. 连续楼梯下降实验
	5.2.3. 非结构化地形穿越实验


	6. 结论
	参考文献

