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Abstract

The installation of signalized intersections can lead to frequent vehicle starts and stops, increasing
driving energy consumption. To mitigate the negative impact of traffic signals on the energy effi-
ciency of electric vehicles and improve traffic flow, this paper proposes a Multi-intersection Eco-
Approach and Departure (M-EAD) algorithm. This algorithm first decomposes complex scenarios
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into basic scenario units, then designs customized solution strategies, significantly improving com-
putational efficiency. The upper layer formulates optimization strategies for three scenarios: inter-
section passage, congested intersections, and following traffic. For intersection passage and con-
gested intersection scenarios, feasible speed ranges for vehicles to continuously pass through mul-
tiple intersections are generated; for following traffic scenarios, a Variable Time Headway (VTH) is
used to determine the safe following distance. The lower layer employs Model Predictive Control
(MPC) to perform speed tracking, following traffic, and stopping control, ensuring real-time perfor-
mance while achieving multi-objective optimization. A PreScan-CarSim-Simulation co-simulation
platform is built based on real road data. Simulation results show that, compared with isolated in-
tersection EAD (I-EAD) and rule-based EAD (R-EAD), the proposed M-EAD reduces energy consump-
tion by 9.47% and 24.15%, respectively.
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Figure 1. Eco-driving system framework for multi-signal intersections
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Figure 2. Scene illustration
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Figure 3. Simulation environment
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Figure 4. Simulation results
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