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摘  要 

信号交叉口的设置易导致车辆频繁启停，进而增加行车能耗。为缓解交通信号对电动汽车能效的负面影

响并提升通行效率，本文提出一种面向多交叉口的生态驶入与离开(Multi-intersection Eco-Approach 
and Departure, M-EAD)算法。该算法先将复杂场景分解为基础场景单元，再设计定制化求解策略，从而

显著提升计算效率。上层针对路口通行、拥堵路口及跟车三类场景分别制定优化策略：对于路口通行和

拥堵路口场景，生成车辆连续通过多交叉口的可行速度区间；对于跟车场景，采用可变时距(Variable 
Time Headway, VTH)确定安全跟车距离。下层采用模型预测控制(Model Predictive Control, MPC)，执

行速度跟踪、跟车与停车控制，在实现多目标优化的同时保障算法实时性。基于真实道路数据，搭建

PreScan-CarSim-Simulation联合仿真平台。仿真结果显示，与单交叉口EAD (isolated intersection EAD, 
I-EAD)和基于规则的EAD (rule-based EAD, R-EAD)相比，所提M-EAD的能耗分别降低9.47%和24.15%。 
 
关键词 

多信号交叉口，生态驾驶，车路协同，模型预测控制，多目标优化 
 

 

Multi-Intersection Connected Vehicle  
Eco-Driving Strategy 
Yuhong Cai, Kaitao Fang 
School of Automobile and Transportation, Xihua University, Chengdu Sichuan 
 
Received: November 26, 2025; accepted: January 6, 2026; published: January 15, 2026   

 
 

 
Abstract 
The installation of signalized intersections can lead to frequent vehicle starts and stops, increasing 
driving energy consumption. To mitigate the negative impact of traffic signals on the energy effi-
ciency of electric vehicles and improve traffic flow, this paper proposes a Multi-intersection Eco-
Approach and Departure (M-EAD) algorithm. This algorithm first decomposes complex scenarios 
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into basic scenario units, then designs customized solution strategies, significantly improving com-
putational efficiency. The upper layer formulates optimization strategies for three scenarios: inter-
section passage, congested intersections, and following traffic. For intersection passage and con-
gested intersection scenarios, feasible speed ranges for vehicles to continuously pass through mul-
tiple intersections are generated; for following traffic scenarios, a Variable Time Headway (VTH) is 
used to determine the safe following distance. The lower layer employs Model Predictive Control 
(MPC) to perform speed tracking, following traffic, and stopping control, ensuring real-time perfor-
mance while achieving multi-objective optimization. A PreScan-CarSim-Simulation co-simulation 
platform is built based on real road data. Simulation results show that, compared with isolated in-
tersection EAD (I-EAD) and rule-based EAD (R-EAD), the proposed M-EAD reduces energy consump-
tion by 9.47% and 24.15%, respectively. 
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1. 引言 

在连续的信号交叉口场景，由于信号灯的存在，行车速度需要频繁调整[1]。生态驾驶可根据实时交

通状况优化行车速度，从而节约行车时间和能耗[2]。信号交叉口处的生态驾驶，也称为生态驶入与离开

[3]。EAD 策略可根据考虑的信号交叉口数量进行分类，即 I-EAD 和 M-EAD。 
I-EAD 考虑自车前方的一个信号交叉口，信号交叉口的相位和时序信息可以通过车到万物通讯(Ve-

hicle-to-Everything, V2X)获取，由于跟车行驶较为常见，大部分研究考虑了前方车辆的影响。例如，廖光

亮等[4]设计分层控制系统，同时考虑信号灯状态和前车影响，上层规划经济车速下层实现避障控制，并

通过仿真验证系统的有效性。陈峥等[5]提出基于初值优化的序列二次规划算法(Sequential Quadratic Pro-
gramming, SQP)，实现了最优跟车速度轨迹的计算。何山等[6]同时考虑信号状态和跟车行驶，利用 MPC
求解加速度请求，在保证安全的同时具有更高的通行效率。上述研究的跟车策略虽然保证了行车安全，

但是未考虑对前方车辆的状态进行预测。对此，宋成举等[7]设计了一种考虑排队长度的生态驾驶策略，

在不同队列长度下均可生成平滑的车速轨迹，最高实现 19.5%的能耗降低。钱立军等[8]采集真实数据建

立马尔可夫链预测驾驶员误差，然后结合快速随机 MPC 算法求解车速轨迹，有效缩减速度偏移量并降低

车队油耗。Li 等[9]直接将前车不确定性纳入约束条件，提出基于随机 MPC 的节能驾驶算法，并通过仿

真与实车实验验证了其有效性。此外，陈慧勇等[10]同时考虑经济车速规划和整车能量分配，使用多种优

化算法实现了基于规则算法 4.98%的能耗经济性提升。 
I-EAD 的研究目前已较为全面，对单车和多车均有涉及，并且扩展到了特殊的场景，如智能交通系

统场景[11]和无线充电道路场景[12]。然而，其优化能力在交通信号密集的复杂城市道路网络中面临挑战，

这凸显了对 M-EAD 的迫切需求，M-EAD 能提供更广的覆盖范围和更高层次的协同。 
M-EAD 的核心目标是规划跨越多个交叉口的最优速度轨迹，最大限度地利用信号相位和时序(Signal 

Phase and Timing, SPaT)信息以实现节能，由于涉及多个信号交叉口约束，一般优化策略较为复杂。例如，

Dong 等[13]使用 A*算法实现多交叉口绿灯窗口规划，然后结合迭代动态规划(Dynamic Programming, DP)
获得最优车速轨迹。Li 等[14]则在评估交通不确定性影响后，运用强化学习(Reinforcement Learning, RL)
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优化多交叉口车速轨迹。类似的，Liu 等[15]提出双层生态驾驶算法实现车速与动力系统的全局优化，同

时采用 MPC 实现精确车速跟踪与动力系统调节，展现出显著优于基准算法的能耗性能提升。在多交叉口

场景，对前方车辆的预测依然不能缺失，否则当前车阻碍自车通行时，自车将进入跟车状态，此时自车

的能耗将会增加。在单车 M-EAD 的基础上，多车 M-EAD 通过预测、约束优化或协同控制等方法解决交

通流干扰问题，旨在不同场景下实现能量消耗与安全性的平衡。Zhang 等[16]提出基于显式动态交通模型

的策略，实现能耗和效率之间的平衡，Ding 等[17]设计基于约束 RL 的 M-EAD 策略，该策略在多交叉口

的随机场景中优于传统方法。此外，Ma 等[18]构建集成生态驾驶和跟车功能生态协作策略，提高了 ICV 
(Intelligent Connected Vehicle, ICVs)的能源效率。尽管 M-EAD 对特殊情况的研究仍然有限，但在密集的

信号城市交通环境中，其能效明显优于 I-EAD。 
为了实现更高等级的生态驾驶，需要考虑更加全面的影响因素，这对算法的实时性能提出了严峻挑

战。Hu 等[19]应用基于最优控制的生态驾驶策略预测交叉口的可行时间窗口，提高了燃油经济性，平均

计算时间为 12 毫秒。Yang 等[20]引入模块化和可扩展系统，优化车辆通过多个交叉口的轨迹，使其能够

在大规模网络中部署，而不会增加计算复杂性。Liu 等[21]提出双层凸优化方法，将速度规划和能量管理

解耦，其结果与 DP 相似，但计算成本更低。陈浩等[22]提出双层滚动距离域车速优化策略，将复杂的最

优控制问题分解为最优子问题，然后使用极小值原理求取解析解，仿真表明相比于恒速策略最大可到达

10.3%的能量节约，并且具有较优的实时性。 
综上，当前 EAD 研究多聚焦于特定场景下的孤立信号交叉口或短时连续信号交叉口。然而，将其扩

展到复杂交通环境时，增加的非线性约束会产生显著计算负担，进而制约其实际落地应用。为解决上述

局限性，本文提出一种面向多交叉口混合交通环境的 EAD 算法。该算法通过将复杂场景分解为基础场景

单元，并设计定制化求解策略，显著提升计算效率。 

2. 算法框架和模型搭建 

2.1. 算法框架 

网联汽车在多信号交叉口的生态驾驶系统框架如图 1 所示。该系统主要由数据采集模块，场景分类

模块，规划模块和模型预测控制模块组成。 
 

 
Figure 1. Eco-driving system framework for multi-signal intersections 
图 1. 多信号交叉口的生态驾驶系统框架 
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在数据采集模块中，网联汽车通过 V2X、GPS 和毫米波雷达获取生态驾驶系统所需的动态和静态信

息，包括信号灯的位置和相位时序、道路限速、自车位置和速度，以及前车的状态等。场景划分模型将

复杂的交通场景划分为 4 类基本场景，为后续规划模块实现定制化算法提供了基础。规划模块分别处理

自由巡航、跟车行驶、路口通行和拥堵路口场景，为每种场景提供了最优速度区间。最后使用 MPC 再次

优化车辆速度轨迹，达到车辆能耗、舒适和安全的多目标优化。 

2.2. 车辆和能耗模型 

车辆纵向动力学模型如下： 

 ( ) ( ) ( )r tMa t F t F t+ =  (1) 

其中 M 为整车质量， ( )a t 为加速度， ( )tF t 为动力电机提供的牵引力， ( )rF t 表示车辆行驶阻力，包括空

气阻力、滚动阻力和坡道阻力(城市道路假设坡度为 0)： 

 ( ) ( )20.5 cos sinr DF t AC v t fMg Mgρ θ θ= + +  (2) 

其中 ρ 为空气密度，A 表示车辆迎风面积，CD 为气动阻力系数，f 为滚动阻力系数，θ 为道路坡度角，g
为重力加速度。 

基于车辆纵向动力学模型，可以推导出车轮处的功率方程。考虑传动系统的效率，可得电机输出功

率 MotorP ， Drivelineη 代表从车辆驱动系统到车轮的传动效率， Motorη 表示电机效率。在不考虑再生制动的情

况下，可得能耗： 

 
( ) ( ) ( )

0
dft t

Consumption t
Driveline Motor

F t v t
E t t

η η
⋅

= ∫  (3) 

其中 0t 和 ft 分别是控制段的进入时间和退出时间。 

3. 多交叉口生态驾驶算法 

3.1. 场景划分 

自车所处的交通环境较为复杂，如图 2 所示，进行生态驾驶时需要考虑自车、前车、连续信号交叉

口、信号灯和道路限速。选取两个特征参数( pred , 1tld )可对交通场景进行划分，得到 4 个基本交通场景：

场景 A-自由巡航、场景 B-跟车行驶、场景 C-路口通行和场景 D-拥堵路口。 
 

 
Figure 2. Scene illustration 
图 2. 场景示意图 
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生态驾驶算法在每次运行时，均会基于环境感知模块实时输出的 pred 和 1tld 数值，通过如图 2 所示的

逻辑判定划分当前交通场景，再根据场景类型调用对应的专属规划模块(具体模块设计见 3.2 节)。各规划

模块根据场景特性规划对应的速度区间，同时明确该场景下的约束条件，为下层 MPC 算法提供输入，确

保 MPC 在满足场景需求的前提下实现生态驾驶目标。 

3.2. 规划模块 

3.2.1. 自由巡航 
在场景 A 中，车辆运动仅受道路限速限制，因此触发自由巡航模式，此时目标速度默认为预设值 setv 。 

3.2.2. 跟车行驶 
在场景 B 中，车辆切换为跟车模式，前方车辆的速度和相对距离被设定为目标状态。在跟车时，必

须保持适当的安全距离，以确保行车安全并提高道路利用率。安全距离通常受道路状况、自车速度、自

车与前车的相对速度和制动性能的影响。因此，提出以下 VTH 模型： 

 ( )
2

min0.1 0.8 0.01
2

ego
safe ego pre ego

v
d v v v d

gµ
= + − ⋅ − +  (4) 

其中 µ 表示路面摩擦系数， mind 表示与前方车辆保持停车时所需的最小安全距离。因此，在跟车模式下，

目标速度和目标位置计算如下： 

 0des safe

des pre

s s d

v v
 = +

=




 (5) 

3.2.3. 路口通行 
在场景 C 中，自车前方存在信号交叉口，车辆必须考虑 SPaT 信息推导出最优速度范围。本文设计

了一种速度优化算法，为车辆提供最佳速度范围，以便高效通过多个信号交叉口。自车以最大加速度加

速至限速，然后匀速到达第一个信号灯路口所需的最小时间计算如下： 

 

1
1

min,1 2
0 0 max 1

1
max

2

acc
acc acc

lim

acc

D st s D
v

t
v v a D

s D
a

−




+ <

− + +
≥



 (6) 

根据交通信号灯 P 的当前状态、剩余时间和周期参数，确定 min,1t 时刻的信号状态，生成一个跨越未

来 cD 个信号周期的有效时间窗口集 1W ： 

 
( )min,1

1

max ,0 , , , 1

, , , 0

remain remain c c g remain c c

remain remain g remain c c remain c c g

t t t N T T t N T P
W

t t T t N T t N T T P

   + − + =  =
   + + + +

 ⋅

=

⋅


⋅ ⋅  





 (7) 

通过将时间窗口映射到速度区间，得到了通过第一个信号交叉口的可行速度范围： 

 

1

1

,1

,1

k
low k

end

k
high k

start

Dv
t

Dv
t

 =

=






 (8) 

其中， ,1 ,1 1, , 1, 2, ,k k
end startv t W k K ∈ =   ，K 表示有效绿灯区间的数量。保留满足 ,1 ,1

k k
high lowv v> 的有效间隔，以

形成第一个信号交叉口的可行速度候选集 2 2
1 ,1 ,1 ,1 ,1 ,1 ,1, , ,l l l l

low high low high low highS v v v v v v     =        。当在预视距

https://doi.org/10.12677/airr.2026.151028


蔡余洪，房开涛 
 

 

DOI: 10.12677/airr.2026.151028 293 人工智能与机器人研究 
 

离内存在多个信号交叉口时，该算法会将当前速度区间映射为下一个交叉口的到达时间，然后再次求解

通过下一个交叉口的速度区间，直到预视距离内通过最后一个路口的速度计算完毕。 

3.2.4. 拥堵路口 
场景 D 要求预测前方队列的释放时间以优化自车速度，将队列中最后一辆车定义为 n，车辆编号从

1 至 n。初始队列长度 d(0)在 t = 0 时刻定义为车辆 n 到停止线的距离： 

 ( )0 1
n

j jjd L H
=

= +∑  (9) 

其中 jH 表示第 j 辆车的静态间隙， jL 为第 j 辆车的长度。在车队开始移动后，测绘队长度随时间的关系

为： 

 ( ) ( )0 dt nd d v t t= − ∫  (10) 

当车辆队列尚未通过十字路口时，第 n 辆车接近停车线的持续时间是队列释放时间，表示为 relt ： 

 

( ) ( )

( )
( )

2
max

1

2
max

2
max max

1
max

2 0
0

2

0
2 0

2

n

n

d
s jj

d d

rel

d
s jj

d d

a d vt k d
a a

t vd
v a vt k d
a v a

=

=

⋅
+ + ≤



=
−






> + +


+




∑

∑

 (11) 

其中 relt 作为推导最佳速度区间的约束，确保自我车辆在队列清空后到达。如果 min,1relt t≤ ，则前方车辆不

会造成障碍。如果 min,1relt t≤ ，则算法计算 relt 时刻的交通信号状态，生成跨越未来 CN 个信号周期的有效时

间窗集，后续计算与场景 C 相同。 

3.3. 模型预测控制 

3.3.1. 状态方程 
在 MPC 框架内，基于离散化动态模型设计车辆跟踪控制器，通过在线优化实现多目标跟踪。系统状

态向量定义为 [ ]T,k k kx v s= ，其中 kv 表示车辆速度， ks 表示位置。离散状态空间方程表示为： 

 
2

1

1

2
k D

k k k

k k k

F C Av v T g v
m m

s s T v

ρµ+

+

  = + ⋅ − −  
 

 = + ⋅

 (12) 

3.3.2. 目标函数 
目标函数平衡能耗、驾驶舒适性和安全性，以实现多目标协同优化： 

 ( )
2

22 2 2 0
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k des E F energy mapk Q
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vJ x x U DU T T Uλ λ λ
η∆=
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 
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s.t. 
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−

+
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−
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 (14) 

在约束条件中，对输出的驱动力、驱动力的变化量、速度和加速度进行了限制，确保输出满足车辆
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的参数限制。在对状态方程和目标函数进行一系列计算后，可使用二次规划求解出最优的控制量。 

4. 仿真分析 

4.1. 场景搭建 

为了评估所提出的 M-EAD 算法的性能，在配备 Intel Core i5-12600KF 处理器和 32GB RAM 的计算

机上使用 Simulink + CarSim + Prescan 构建了一个仿真环境进行仿真测试。实验模拟了成都市的真实城市

交通环境，该环境包含九个非均匀分布的信号交叉口，如图 3 所示。每个交叉口都配备了 V2X 设备，将

SPaT 信息传输到网联汽车。 
使用两种基准算法：R-EAD 和 I-EAD 进行比较分析。在 R-EAD 策略中，自车以恒定的速度接近和

离开交叉口。遇到红灯时，车辆以预定的减速度减速，直到完全停止；当信号灯转换为绿灯时，它会以

预设的加速度加速穿过路口。I-EAD 策略仅根据当前交叉口的 SPaT 信息做出决策，其他操作保持与 M-
EAD 相同的控制逻辑。R-EAD 和 I-EAD 策略在检测到前方车辆间距低于安全阈值时，进入跟车行驶状

态，以保持安全距离，并使用与 M-EAD 相同的跟车控制算法。 
 

 
Figure 3. Simulation environment 
图 3. 仿真环境 

4.2. 联合仿真 

联合仿真结果如图 4 所示，包括位置、速度、加速度和能耗。在图 4(a)中，M-EAD 策略表现出更平

滑的轨迹，实现了所有信号交叉口的平滑通行。相反，I-EAD 策略表现出突然的速度变化，快速穿过当

前交叉口，然后在下一个交叉口缓慢通过，这种速度波动产生了额外的能耗，从而累计能耗增加。这种

现象在 R-EAD 中更为明显，如自车在 4 号交叉口完全停车等待下一个绿色窗口，并在 7 号交叉口因前方

车辆的阻碍而紧急减速，如图 4(a)和图 4(b)所示。 
图 4(b)显示了 M-EAD 具有更平滑的速度曲线，最小速度为 20.71 km/h，最大速度为 51.02 km/h，平

均速度为 36.35 km/h。相比之下，I-EAD 表现出明显的速度振荡，并且 R-EAD 更为明显，甚至在部分交

叉口出现了停车现象。图 4(c)证实了 M-EAD 不存在高振幅加速度波动，无论是在起步阶段还是终点停车

阶段。 
如图 4(d)所示，M-EAD 的能耗一直维持在较低水平，并且能耗曲线相较于 I-EAD 和 R-EAD 更加平

缓，没有突然的波动，这也印证了加速度和速度曲线。在整个行程中，M-EAD 的能耗为 846.5 kJ，I-EAD
的能耗为 935.1 kJ，R-EAD 的能耗为 1161.3 kJ，相较于 I-EAD 和 R-EAD，M-EAD 能耗减少为 9.47%和

24.15%。M-EAD 通过消除固有的走走停停模式，在混合交通环境中实现平滑地通过连续交叉路口，实现

了显著的节能。 

5. 结束语 

本文设计了一种面对连续信号交叉口的生态驾驶策略，并进行了仿真分析。通过分层算法设计，精

确的驾驶场景分类，触发不同的规划算法，从而提高适应性。结果表明，与现有的 I-EAD 策略相比，所

提出的 M-EAD 策略将平均能耗减少了 9.47%。 
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(a)                             (b) 

 
(c)                             (d) 

Figure 4. Simulation results 
图 4. 仿真结果 

 
尽管在信号灯交叉口，车辆会考虑排队效应而避免跟车行为，但在非信号区域，车辆仍然会遇到跟

车场景。实验数据分析显示，由于速度曲线欠佳，车辆在跟车操作过程中会产生额外的能耗积累。未来

的研究将把生态驾驶与路径规划相结合，以进一步优化能耗。 
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