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Abstract

As a central focus of contemporary artificial intelligence research, Large Language Models (LLMs)
have demonstrated significant performance advantages across a multitude of downstream tasks.
However, the issue of hallucination has emerged as a critical bottleneck to their application in high-
reliability scenarios, attracting widespread attention from both academia and industry. This paper
provides a comprehensive and systematic review of hallucinations in LLMs. It begins by systematically
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elucidating the definitions of LLMs and their hallucinations, followed by systematically establishing
a classification system for such hallucinatory phenomena and conducting a multi-dimensional anal-
ysis of their underlying causes. Subsequently, it surveys methods for mitigating LLM hallucination,
such as supervised fine-tuning and retrieval-augmented generation. Finally, based on an analysis of
the limitations of existing methods, this review offers an outlook on future research directions for
mitigating LLM hallucinations. The aim is to provide a theoretical reference and practical guidance
for the development of more reliable and trustworthy Large Language Models.
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1. 5I8

EAESR, F P MR TR AR . SRR, SRR Easl FR[1]. Transformer 2104
H BURCRRIR TR R WU BT TR T A8 TR 22 100 2 (RNIN) AT B 4o 28 190 265 (CNIN) 7 b FE K- 7 51
A T BB [2] - 1K — SEBHER [ IR 75 A0 TR 4TI S B0 M B 75 SR B B2 TT B R ) 5,
PRER KT S BRI R FIR . X MR A e KIS HRE, AENS MOt B B R 2% 51 B 5 (0RAE
FORGHE R E S, R R A MZ AR S B R CERAS . BTG [ SRIE A FR AT
R WHE S5 T 2SI T S ) P B o 7E R BB T SOA R B 1 B S5 AN U AT 2 M0 2 I [3]-[5].
ORI, B KV 25 B 87 P I 2RI N, VS 7 1 0 5 b R L T 0, v TR 5 1) A A R L
KV B B T A R LA S R . KR EL T e A R P2, X PR B R M 7E T
WA A, WS PR S . I R B T K 7R SR R R AT S S e A,
TEEAUR, 2% AT AL L AR TE MBI, ARSI, T REREEHR IR 4 S
BHEYPAER, —ANIETLIR 05T 7T A S8R 15 S 6]-[8] BB IE S B L%, LR
RIAHI TR, TR Ak, TR0 AT, O K B AR — 25T 3 5 TR AL 0

aFs
2. KIBEHEEEXEE
21 KEBEERE

RIEF BR8N 77 A RSCA, BIFESE R AR S p (prompt) (Z6AF R, BT — 4
i 7t (token), FFH AL IR0 3BT LR SCRN 1 BV IHEAT Je SR T . BN IR A A A F
BEAT, B PRI AT CAE R BT AR R A R SGE BT AR [9]-[11]

BB — NN T FSCRF S X = (X1, X, ..oy X1), HAEEA X225 i 4> token. 45 K14 p,
AR 3 1 B R MR B B R 0N — RPN, SE B ISCARBR & R X (D) s :

P(XP)TTP (3 % %1.0) "

FESKBR MR B AR O AR A, AR SR i DI, B 2 ) — T AT B R ST SRR A
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H1 (X, ...y X)) RN X <iy FoRAT i — 1 ADNTA R token. %A 26 BEAMAIE RV, BTG R B3]
JCXEV IFEMER, XA SR ()R-
P(x

X..0) @

FEE BRI, N7 WA AT Tk £ R AT token, REALZESHE R —A> token FIH5 8
TR RNE , 1ZSRNSTE SR — D T PR 1) B B SRR I token, IR 1% token 1 IR B
2t XA E)FUR:

x, =argmax P(w|x,,6) A3)

weV

RIERL R H 77 5O — A token #2345 — 1> token A2, B —/ME SGE S H 8 245 G fen i 4
M5 BESCAR 75

2.2. KIRBL)%

TERBE S A 7048, £)9E (Hallucination) 20— AN SR ME R R ARIE, KRR L) 5 R 7 A= il
R A FEED G = S SRR ot I 28 [12] 0 IX PR T & BRPE S R DN VA G 1 R & B 8 iR i
B, THIFRER RS . LLM LI5E IO AE TR0 5F 2BARE ST N 2, B2 WA BbR R L4 H A4 1
JR[13]. Bk, FH PR S = U IR BEGIE T BB LT, AR SRS B A ) R R P RN SR . S
S —PhAR, RLRFALEIR T LLM Z)5E 00 E R R, Fmad SR S [ R 5% 284052 1 A2 L 5 3%
DURHE, B EARE IR AL T B B HHR T H, 38T F P AE AR 2 B oo i e oA 728 S S PR (R VP A e

DA B AR R R L) BT T 025, 2058 Ko7 BT LR A R 28, WEl4)oE 5 4M 4] i [14]-
[18]. FFLMEL) 55 s £)5E[19] [20].

BRI N EBA) & 48 R A AR B SCAR 5 H P SR gt NS BEl B PSS BT E MBS . X
PR R OFRAELE T I IE T S HRAMT AR, ARIETE T 25 B 25 AP 77 )i

ML AMBLI WSRO SN GBIEA—E, BN bR SCESESUE N IS . 4h
HRLD B AU ARIRAE TR B I SR B8 10 R 10 B 1 DA B A 28 T vk v At U 1 B i it . SR I i Hh B o
AAFAEI SR SFRa g, b IRL) A 1 5 15 Bh A AR s AT 2 T

FMEL) N FEMELI R IR RIE S A AE A A SR STAE IR . 2L ISt A
SRR R A I AU ERIE S BR, AR R RS T IIE S AR S B AR R 22

RSEMEL) N BRI MEL) B AR A A N 2 I B N PR BT R AL R SRR . HAR G OARFAETE
T SN Z A A — 2, RUBRN Y 8 25 0] R B B 1 N R S R A HEME, HRAR IR R
B E S\ B R R e 1S R BRI

AR SCEET RS 5 AR ALTE SE bR N AR A ARE A, MBS L R S K B P AR, K KB L) v 4
SRV, A BRSO 8, AR, WA B, FOE, A RENE 1 . B
X BRI L] B M RN E, RSO — ML) R BRHORG, Wk 2 Fw.

Table 1. Classification of large language model hallucinations
1 KESRELORSE

ApE St Rl 4 Rria gt
ERSCA 5 B N RS v th A5 P R NS IS b BT RO ) S S B B BT A
BHA B N RS v th A A ERIZ R A — 2
HELA FLHERE A SRS R E
g FLHERE it A B JCVR AR B S B4R B AR SR IE
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Table 2. Examples of large language model hallucinations

2. KIESREL RS

et VAL VN

AL A

Ui ]

REE LU R TR RS
MIBVE: YRAERERIE AL
TIRE AT —
PR A T . BT
1887 4F & 1889 4 Ji], &
1889 4F-tH FL1H Va2 (14 0
JE i, TR B
VEE— B E A AR F A
WO TF T

ERSCA 2

)AL 8
Fro RT3, BRI
by

BHA

HEAH R EAR I

JEHr KRR P s
EREH

PR R RS R — PR TR 3
FIbr B RS XEEHER
WS T 20 ey, HA)
SRR S 2 B T A
AR RS . ©
EHNRTIWNATHESE
REEEHLE.

BIH 8 F, 127 3 ARk
RN 8-3=5}, FrLA,
BRIT 4 Fro

T - Zil DU BT S
11 [ 44

1933 4F, EH AR LY

SRR HTEEAT 7Tz M

&, JFIEEAEAE R

RURFIKERD), FRRZ

HH AR T2 A7 e
o

KA S 45 5 BT AR A R e
A5, AR R S R
“HNT SRR BT
T “20 e’ , A “%
PR 7 o BT AR
BlE B CHEERT 1, T

“mE” T “1887 (EE
1889 4£” [a], FHHEmWIEE T
— ek [ AR FE AR T 1

“HEVE” o

R ol R AEAE R A — 5. &

IEFRTHSH “RIT S 7, (HEE

JE LRI T AT JE B4 R Ik
FF4R” .

KRB (e % J T Se AN — B

PR VURBE AN AEA T H— 6

SRS, TS - iR
PR A B FRLKT i ) 44 o

KA (g m] N7+ Sifig, B
B G Bk A I St Al 5
RUMEH A MRD L= W itATIE
PESR I A Bl E A2 LRI TE
FEo WESU BB ATIIRAZ — RN
HARZUESL AR B

2.3. AwEERA

ARSCERE 7 AR R L) e AR MR B, KA A 20 SE IR T I SR Bcdls, A7 SR A 7R 2 3 J i Y

AR, AR RSN .
2.3.1. VLB

KRR R E R B s B T PSR, KRB RE /R U T X 8 1957 20, Hdle 10 ot B4 3R 7 S R i)
BRI PERE . R I SR ) H0Hs vh B e A5 Bl 00 5 B i, AR, (Ml BRSE . AR E
MBI e, LAY 2 ) R E R TR AHE B, SRR S H R 45 R [21]-[23] . KiE S HBAL M A
SRAOE R YU A AR R E A SR, BARE S, (EX A, BRIT . SR BES S
F& VAL T B AU [6]-[8] [24], A TN GRS RL b U (1) AR S i AN 8, 5 BR[040
R R 25 Gy pE AR L) . R ANTE B A TN SRR RS, HAREE A “HUEEIT o Mbkin
MR IR E e v B B S B S, BTG VR R R S e, R R N, R
%J%[25] [26].
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2.32. BRI EIZ

LITE 7 AL AR A JR IR 2 —FE TRV 5 R B, SR A R AT 55 R R AT 1R e T, B
AR CAE B SCA B, 0N it B KR AT X AR A e Y B F AR R AR RIE S S
HERATE, TR ORIETE 5 _EAIE B S mmT REVE[19].

B Y Sh e R T W 5 I R B HEBR B BB A A — bk o AR IZRrh, RO LRSI BSOS
BEATTRON, MOAEHERLRS, AN E B AT REAAAE N 22 1 LSO AR EAT SR TN, XA Ay
AT RIS 2 51 KR Z R R AL g, SEAERA B AWM ZE[27] 2R RAE I ZRd R b i @ 10— etk g
bR AL, AT R REORBRAE — Lo QU™ AR L) 50 . 2 R TE 5 R B BE 0 oot 5 25 ) Ik
Kl e 7873 SCRFIVE FEIIN ,  JUH R AR FLN R B AN 2 1 L8, 227 AR 4] 52 [28] .

R 5 AR SOA AR Jl O R P R AR SR, IS O dan 51N T RERLIE TSR . i, KR e
tH B BRI 8 2 B0 (temperature) 5 IR EE BB T DA SRB3E ), (HB 2 PRy T2 FARmE
(R3] G, 11 5 2 1 I 2R LD 0 0 KUz [29]

2.3.3. APRRIA

F P B4 s 2 3 i KA R L e 1 — AN R 3R, F P B3R id &% SRR R = A 405 . 24
FH PRt ON B TV N BTG R )55 0 R AR P 2 I, R R [ 3 X e RS BT R M ik S
Vg, MWNAERSFERATFHANR. X AR E R AR R — R A iR, 2Bk
N UR S ST . X — RS iR T s i SR A 0 R AR 9 A BT R IR, o AT iy L 1)
WAEZIH TR AER Y, Wi 7 H eGSR, XA 7 i R E R % 54 [30] [31].
3. KiBESERLIRERT®

ARSLR GRS KBS L)W Ik 1 24 Ru it Fe T 2 R S5 AR 2 05 R G008 H JZ T K,
HCRWE 1R, 75 RBERZ T 17 7R HEA W B0 (SFT supervised fine-tuning), 21 A28 e 45t 1) 5

k2% 3] (RLHF reinforcement learning with human feedback), &4t /2 % #27~ 175275 (PT prompt trick), &
LR AR (RAG retrieval augment). UL H SAARA T1E LN .

RIESRE
X)DLH RS
23

v

RER | AR

v v

SFT Prompt Trick

RLHF RAG

Figure 1. Hallucination mitigation methods for large language models
B 1. KIESEBELEHBG A
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31 =HE

3.1.1. BHEBERIA

A B AR R AR RE BT 55 (1 O, S I N AR e R R A e AR A AT O . AR R
B AT S T I BR e BB, A bR B T 1 R B S R B N B SRR 2 (R 22 S, 3@ /ML
PR, R SHOAT IR, AUBERL A% BN iE T B SEAR 45 [32]-[35]

i, Luo Z£[36]#2Hi Code Evol-Instruct 54 h.45& SFT B)7J57%, LA StarCoder 15B #il CodeLlama-
34B-Python AT ZR LAt AL, @4 ACHEL Code Alpaca (£ 20 k HIAEREA) A B T 21 78 k BEA, Hi%
BRSO J5 1 WizardCoder #E78Y,  H% §E R AT A RIS A sloRAR Y . Zhou S5 [37] 444K LawGPT
BRULE R A AT S IR I, S E 5 200 K FFJEAUSEAHOCRE A . 20 K JEC-QA A M & FE A J% 80 K
% GPT-3.5 Turbo T i i S AE A, 3k 300 K AALRZN 5 2 ##a 4 DLFT. UL DLFT Ml gididls, o %
SR LoRA HERIMEAGIE R S0, 4 SFT J5 11 LawGPT, 7EEFEARE T 8 MERUTS h R TIT
Ji LLaMA 7B, F#A% 7 A R 70 g B 45 U 4068, B6AIE T SFT AR TR AL A 55 Pk RE IO .
Li Z5[38]JF K [T X 1E#7 ChatDoctor Ff, DL Meta (1) LLaMA-7B BRI HEAT I, Jeiliid 045 Alpaca
PO B AT RO, BIAYSRECGE R XS AE 71, FEH 10 J34% HealthCareMagic B 52 Sl $eda gt —25
TR AR AL ZE T B RE 77, [RS8 10 76 28 (1 Wikipedia) 5 5545 (5= T MedlinePlus 193 504 ) B = %1R
Tor BRAREL s S5 2GR T YR (B 2B (W) B 24 (4 Daybue) 2 T lki2 97 17, #£ BERTScore (0.8444
+0.0185). #1013 (0.8451 +0.0157). F1 {£(0.8446 +0.0138)Z5 ML REFR PRI T IUA ML . Z AR GEAL 5 BY
BEAE S BT BT RUREL = M X BT T St IR R R AR ) AT s B AT
W, RefS A AR B R AR 8 AU AR SRR T o (RGOS TR 1 285 SR v R AR T T i 11 o A

SFT i B T WO &t i B = 5 RS, 5 B v A7 AE e s | BB RS B, BN TG V27 ek
LI, AT RE AR SEAE R IR, IRECKHIR ., 5 2 i AT by Sl A v &, PR 7 e
WEFIBN . SFT MERN—FoMEXT 5715, I AR M R R A A Rya R [ R ER, e
Pi IERB 2R LR AT R, RS R DIE & 7% 51 kMo = S se st o B AR R B FRIA R . SFT 1)
MR TR AR, EEERT CUIZRMEEE /A0, T H AR B A ) U, R W] e AR
A
312 EFAXRBHRLES

RLHF & —ffudid A\ 28 E 0 itk de 5 ik 2% SRR AR RN 5 7 vk« RLHF (RO N 80 48
RU%G I VE A GBS RIS 2 ANt BHE T ) SRR — AN 2l 28, DA AXHE LA T 22 il ek B, 51 A8
BT AERF A& AR E A i . RLHF 85 8 =08, Jo M @i S 80 B, /A AR
TRNZRAC SRS, I fia F B2 o) A A A 2 [39]-[43]

lacovides Z5[44]#2 H 4Rl B> HTHEZE FinDPO, DL Llama-3-8B-Instruct ARt 7Y, 454 B R
AL (DPO) 1IN i i o} 5 SARFROE FL(LORA)VEEA, K =N FF G R 9 48 £ 110 32,970 S5 FE AL Sy (fi
1, ) I Zrnt, 38t DPO 5 25 B Jr R AUA 5, 45 L, F1 0%k 0.846 (T8 FinGPTv3.3 11%),
66.64%EAk Bl . 2.03 H LR, Dai Z[45]7F RLHF HEZL |7 HH X04E 5 il stk JR i A\ BRI ARiE
ST AHHET S EEE + RS LVERT BB, W liIgk RLHF B2 (RM, &
1A F ) 58 G B AL (CM, IR ), S 2@l Rtk B H S 20R, 76 RLHF SO s s Bl K
2. SEEeH Alpaca-7B 42 =% Safe RLHF Tt 5, 4 50 5. %8 M\ 53.08%[4 %= 2.45%. Yang “5[46]42
HH SC BT KA AL Zhongjing 2 CMtMedQA 4 45, LA pe e FHASE 84 2 7 4138 A A - Zhongjing 25 T Ziya-
LLaMA #28Y, RHIZR(ZIREIT i8R —SFT (DUZREdE Al &)~ RLHF (T & niE + PPO HyK) & iifs
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%k, CMtMedQA Y 14 BL=IL 7 FI R Z R T 1E . /£ CMtMedQA (£ 541 1%) 5 Huatuo-26M
(A0 UE) ORISR |, Zhongjing TE T Lk FiMpE . Atk = R4 BE R LR A 53 e 7 b A4 B R bk
BenTsao. DoctorGLM. HuatuoGPT &3 2k ik ,

RLHF EREA RO FAE AT N 5 N Kl (HH N AEGRRE S5 N A AR th o 2B Bt 7 2 K &
FR R AR R EE, SESRAR R BE R, R, 25kl B W AT REAEE R L AR
St Sy N A 22 IR 2R SR, iR AR T 1A)

32. NAE

3.2.1. RRIAETS

PR 1A TARE NG HE S AT N SIRZ) IR I B R B2, AH AR RO . ZER A
WEEAE ST, Toida AR S BN BB AR A, SN A T m i Hyg b I EAIC . $7R 0] T
P A2 45 I BT AR AL P i N B3 1], DR RS R B AR i (1 R S WA 11 48 2 R A B 1 i LR A% 5
M 51T A R . SRS USSR . XM I B AR R KA R ) L) v R A2, I REfR R
B R K WAL ARSSE RS R, T E T AR AR R BRI B s . AR
By, ZRXEE SR R[4T]-[49].

Wei Z5£[50]42 H B4k 5% (Chain of Thought, CoT) CoT A% O /& F1 i 4% Ge bt i) f B B2k HH & R,
SRS RE MG “UE P, U IR FEA), IREERIE R R N AT, DOE T
BN 0 SCATE 2 A R HESP IR . X R AT 77 v A% O AR 2 RIS B AU B AT R —
A token AT, HAERET B MRS R . @R RPN A TS WA L B IR, GRS
FORIE 5 B AR S HL AR A A R

bR B AERE LR Ah, B B BT R G 1] (T 513 R AT N IR R TR 215 J2) R £ AR AL
He fERGPERIA AN BRI ETCIERAEE B M4, 1T LLANIE S M L) 0 1 A
Touvron Z5[51]7EH I &1 Llama 2-Chat f Y fr (R A 17X — %, i Ra e nia B Rie “ 351K
ANHTER— @A R, HUZERERIEE .

PRI R A BATE A BT TR, (BN FESRFE S R ME SRR . 1B A—FSNT SIS, Bk
fisk Je A5 B M2 A0 A AR AR R PR AN S HE 2 THRE N2 o), YR bR AR A . HRCR s A P i, #2
EVEZE, HAETNG I m s OO MESS . 77 2% i i), B S S5 A AR . %07
VELE MRS SR L) 7 T Re 1A R, M DA 7 = T SE MRS 5 T IR BRAT 45

3.2.2. MmEEERAR

K2 R B (RAG) M L Bl R AR R AT 5 A SR B AR R, SEBLEh S RIREAN 5 WA 4K
R . HTARREIIE 2 Pros. RAG Ly RAEHERIG B/ oM, M ERR. REKRREFHAR
MBI ESFIR I A4 AR SGSOR B, R ARy B R SCRES B P RS IA o K B A T X S AT IR IR A
B, SE R EWARA AR, B3PI SLHER P T BRI KT 5 R [52]-[56] -

NT RS RAG fE4 R R R B, Edge S5[57]#2 H 1) GraphRAG 7572, I #4 £ )2 4k
FIR S 2 51 R R A Map-Reduce HL], HAGRE 7S APIETBL BSERAARERY: TR AR MR SRS rh SR S
Py RAETTHRM ARG, FRE A DRI S0k X 70 N R IRAEAE X, I A DR i 22,
TERARIMR G . ELREWRIB: SR &, RGUFT AN A X EA R N2, HPf
R A XA R, AR ME 2 R R A 58, T SEEL 1 o0k BEANERLEE ) 42 Rk = SO 2

iR GraphRAG A7 7E ) token JF4HIE A, BT A e & AAS R ACRAR R (U138 Guo S5 [58]4&
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H 7 ARG R SRR 5 5 XUE R RGN TE LightRAG. %7768 LLM M SCAS i H sz 44
AR AMEFIRERE, R AL A R A B EX R 5. ERRN, HERREAS S TH
S, B NEW PRS2 RO, R AR R R A S BE A UL B B SR, A
JR KRBT 5 RHR M 5C RFATILAC, ol id S5 3 e 21— B A0 m 17, B ST g, 51N CILES
SRR A AR ETT i, IWTIFECRAERE ZE LR RN, F& 75 B EEANR L . il i Y & s 5
% AR TR I 7 S R B AR RIAT SECE R, A ROE % T GraphRAG B IT4, LBl 1
M AR HIE RS2 ) RAG R 4Es

ﬁ EifEEL

OF T8
AP
BEER BEES e B
- 3 <
LEERE S P RREER
OF e
PR E

Figure 2. Diagram of the standard RAG workflow
B 2. #rfE RAG TIERIEE

RAG 1A R i BT S0 AN IR K S B L I 541 . RAG 2R Gt i f 28 it i i 2 3G
FRYUE RO ANE R 2 A R AR BUANHE 5C B SCA BRI, R oo e TR R i) B R SCHEAT HE 3,
B ERIN A, SBORERAEL)5E

FESEBRI A, % T 3 GraphRAG 45771, A 7% (K AN R B R 51 B0 K ORI 8 e AL L
DB R P 1 2 2 S0 O TR I S 25 RO 22 B AR 9 S50 55, FESEBR S rh R4 AR, (4500 TR 2R FA b 2 5 4
PR — T BT I AR R AR

N3 3 iR, IWBEHEAKA . TS RAS | TR W ROR - AT SR 2 N EE XS SFT. RLHF. PT. RAG
& TP TTIEIAT UL
Table 3. Comparison of different hallucination reduction methods
@ 3. FREIZ)EIHmM T AR

ik Hs A THIRA] B ROR ] R

T FE N LRV 5

B E IR R, &

SFT  HUME, MURZHE R L T AE DA SR R TR A % o
[y HORR AR AL 3
e BERREAKRUS  QESMERNE. VR MBS AR s
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4R, Eit
Heg
IR A R e
PT ik oRPHbmAE g e oSO R
f ‘
N L BRI
rag  PORWOBUMHRUEMIN g Teeren, mEsr RS RsbesaEmi Her

5 e T

4, RFKHRFME
4.1, EERTIANEEEHR

HH SRR IR R SEORE A AL EE R, Sa B4R, RGNS ENT
GRMRLITE, (EIX LTI RE SEHLHE RIS B FE i $ T sl e P20 23R, it OB s iR TR A R
RHEBEHES. WAEARELEEX R IAHIER FREHFSMRS, SEENGPCEERRGS
A ORI A 2

AR FETT AAE T Bt B AR s im WA SE, RN P S i A BRRAE , A Rl ik &, S
B B B ia] (R AE R, BRI SRR B R L5, SRTHER T IRBE 70 5 i T AR
AR AR MR SN BRI R s vt 22 28 B AR R R S A2 A i “ e
&7 R SRV TIRIL, ERIREIZEIE ORI A T B IR R AT E . HELWE R
BUBKIR S ), TR R bR SCEh AR (U A ™ 22 5068 0 vh 3 7n1m IO A2 A6) 5 F P AT 95 AIE (it 7 e i
SENEE SRR R L)), K 2 AR R A AR, DL 2 5T & S s 1 R B R 5z 4
RET. MR XK - R 2 - W SOE R B RAR R o B B SR, BT 1 (PR 54T 9L
X IEHFREFERTR. RIEERRRAEERESESRN, "WouR. by m=DREEER, XA
[l KB A5 2, SEELA & RS RS A B . s B s 1) R0 B3k 5 LA ) 5 VR 95 3 4 0 [ 3k
o M ARGER XS FR IR N, AT B AR A AR A BT LA, T RR R B S AR FR 4 s A
HERIRIATT, DA DE TR G JRTHC R, RN KAE 1 4] 58 XU 7 A

4.2. REIAERATEMEHHIRAE
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