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Abstract

Knowledge graphs, as a structured form of knowledge representation, play a crucial role in organ-
izing human knowledge and enabling intelligent applications. Traditional knowledge graph
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construction (KGC) pipelines rely on discriminative models, but they often suffer from error prop-
agation and limited cross-domain generalization. In recent years, generative approaches have
emerged as effective alternatives owing to their end-to-end sequence-to-sequence modeling capa-
bilities. With the rapid advancement of large language models (LLMs), generative KGC has further
evolved from conventional seq2seq paradigms toward a new stage of large-model-driven, full-
process construction. This survey provides a comprehensive review of recent progress in gener-
ative knowledge graph construction. We first summarize classical seq2seq-based generative
methods and analyze their core mechanisms and application scenarios. We then focus on the
growing role of LLMs across key components—including ontology construction, knowledge extrac-
tion, and knowledge fusion—and highlight their methodological contributions. By comparing the
advantages and limitations of different paradigms, this work outlines promising future directions
for generative KGC, including architectural optimization, multimodal integration, and intelligent
knowledge fusion.
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Figure 1. Overall pipeline of generative knowledge graph construction
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Figure 2. Taxonomy of generative knowledge graph construction
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