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Abstract

This study aims to predict whether customers will purchase bank products through data mining
and modeling of bank customer data. A Stacking ensemble learning method integrating Random
Forest, LightGBM, XGBoost, and Multilayer Perceptron (MLP) is adopted: firstly, these four algo-
rithms serve as base learners to explore linear, non-linear, and complex feature patterns in the data,
and then a Logistic Regression meta-learner is employed to integrate and optimize the prediction re-
sults. Experimental results demonstrate that the proposed ensemble model significantly outperforms
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single models in prediction accuracy and performs excellently in the task of forecasting customers’
product subscription behaviors. In the application phase, six customer groups are divided based on
the key features output by the high subscription probability model and customer behavior labels,
and a multi-dimensional user portrait system is established, thereby providing robust support for
precision marketing and customer relationship management.
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Figure 1. Framework for predicting bank customers’ product subscription
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Table 1. Bank customer data field description

=L RITEPRIEFRA

T
age
job
marital
default
housing
contact
month
day_of week
duration
campaign
pdays
previous
poutcome
emp_var_rate
cons_price_index
cons_conf_index
lending_rate3m
nr_employed

subscribe

Yi W
R
HAk: admin, unknown, unemployed, management...
U§%H: married, divorced, single
GHR 2B HIEL: yesorno
AT yesorno
Bt £ J730: unknown, telephone, cellular
E—KBERM A : jan, feb, mar, ...
b RER AL mon, tue, wed, thu, fri
R R (D)
G BN IEN I R 2% 7 IR
ER SR RS R R R A
EARYCE GG, SE PRI
ZHTEIESIZE R unknown, other, failure, success
AL AR B A (TR FEFRAR)
T 2 A TR BE R AT)
M 2 FAE O Fa (] B HR)
RATRDNEYFAE R 3 A R (5 H 481r)
Jie G N B AR PE)
B RTHATEE: yes 5 no

Table 2. KS test for numerical variables
2. KS KR

HAER A 5 D it p1H 2 E KT I3 B

age 0.0085 0.8090 0.05 &=
duration 0.0080 0.8658 0.05 &=
campaign 0.0131 0.2858 0.05 &=
pdays 0.0126 0.3289 0.05 )
previous 0.0052 0.9982 0.05 &=
emp_var_rate 0.0065 0.9687 0.05 &=
cons_price_index 0.0162 0.1041 0.05 &=

DOI: 10.12677/airr.2026.151021 213 NLERES LS AW


https://doi.org/10.12677/airr.2026.151021

B3k
cons_conf_index 0.0097 0.6628 0.05 =
lending_rate3m 0.0062 0.9819 0.05 =
nr_employed 0.0169 0.0785 0.05 &=
Table 3. Distributional variable chi-square test
3. FAHKRER
Gy RIAR B raita H pfH BE MK IR 2
job 19.9164 11 0.0465 0.05 i
marital 4.9645 3 0.1744 0.05 =
education 3.7780 7 0.8050 0.05 iz
default 3.1650 2 0.2055 0.05 iz
housing 0.3740 2 0.8294 0.05 =
loan 2.7069 2 0.2583 0.05 &
contact 0.4208 1 0.5165 0.05 &
month 9.5339 9 0.3895 0.05 =
day_of_week 3.4266 4 0.4891 0.05 ==
poutcome 0.4119 2 0.8139 0.05 =

o B AEE R, {H job. marital 55 6 N ESHURFAEAEAE “unknown” JE 3 RR Bk 2K (default = Bk 2k
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Figure 2. Implicit missing variables and the corresponding proportions
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Figure 3. Box plot for outlier detection
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Figure 4. Stacking ensemble learning framework diagram
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Table 4. Comparison of several models on the validation set
4. BTER XTSI

(B Acc AUC
SVM 0.883 0.757
MLP 0.889 0.880
XGBoost 0.902 0.892
LightGBM 0.900 0.887
Decision Tree 0.853 0.668
Random Forest 0.899 0.882
Gradient Boosting 0.888 0.874
Logistic Regression 0.879 0.732
Linear Discriminant 0.879 0.746
K-Nearest Neighbors 0.881 0.724
Table 5. Optimal parameter settings of various models
=5 HRURMSHRE
R SRR ZHIHE
max_depth 80
RF
n_estimators 1500
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alpha 0.004
MLP
hidden_layer_sizes (128, 64)
n_estimators 2500
learning_rate 0.003
num_leaves 20
reg_alpha 3.368
LightGBM reg_lambda 4.753
max_depth 6
min_child_samples 71
subsample 0.984
colsample_bytree 0.814
max_depth 3
min_child_weight 6
gamma 4.233
XGBoost subsample 0.811
colsample_bytree 0.810
reg_alpha 1.318
reg_lambda 2.732
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Table 6. Prediction results of different models
= 6. NERBEITFUNLER

Y 44 B Acc AUC
Stacking 0.971 0.887
XGBoost 0.963 0.880
LightGBM 0.964 0.885
MLP 0.927 0.802
RF 0.956 0.886

LR 0.923 0.855
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Figure 5. Comparison of multi-model results on ROC
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Figure 6. Comparison of prediction results of different models
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Figure 7. Feature importance ranking
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Table 7. Customer group classification and distribution by activity level and user type
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Figure 8. Customer segmentation feature importance ranking
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Table 8. Customer segmentation portraits and suggestions
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