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Abstract

Semantic segmentation and boundary detection are two critical tasks for autonomous vehicles to
achieve precise environmental awareness. However, most existing methods treat these tasks as in-
dependent or merely stack semantic and boundary features, neglecting the intrinsic relationship
between them. This oversight results in a lack of explicit modeling of the interdependence between
objects and boundaries, often leading to blurry boundaries and category confusion in regions with
similar colors. To address this issue, we propose a cross-modal joint perception network, which
enhances RGB images by incorporating depth information as geometric priors. Additionally, the
method establishes a dynamic boundary guidance mechanism that utilizes both boundary infor-
mation and geometric structure to jointly steer the semantic segmentation process. Specifically, the
method employs a dual-branch architecture to separately capture RGB information and Depth in-
formation while introducing a Boundary Guided Cross Modality Fusion Module (BGCF). By dynami-
cally fusing RGB features and depth features at various levels, we establish a global dependency
relationship between the two modalities to obtain more accurate multi-level fusion features. To fur-
ther enhance the capture of multi-scale global information, this paper references the Adaptive Pyr-
amid Context Module (APC). In the decoding stage, two independently designed decoders are used.
One for semantic output that generates precise segmentation results through the BGCF, another for
boundary detection that employs lightweight residual units to effectively integrate local details
with global context, improving boundary detection accuracy. Experimental results demonstrate
that the method achieves superior segmentation and boundary detection accuracy on the City-
scapes dataset.
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Figure 1. Overall block diagram
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Figure 2. Network framework of BGCF module
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Figure 3. Network framework of APC module
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Figure 4. Qualitative semantic segmentation results on the Cityscapes dataset
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Figure 5. Qualitative boundary detection results on the Cityscapes dataset
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Figure 6. Recognition results for small targets and complex scenes on the Cityscapes dataset
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Table 1. The performance of the proposed semantic segmentation method was systematically compared with that of the base-
line model on the full-resolution (1024 x 2048) Cityscapes dataset

3% 1. FEE 7 PEER(1024 x 2048) Cityscapes #IEE F ARG AT TR IB X D EI A S B L ER A EE

J7i: RS LTI mloU (%)
MobileSeed AFF-T RGB 78.40
MobileSeed-d AFF-T RGB-D 77.45
AFFormer-T AFF-T RGB 78.70
SGACNEet R34-NBt1D RGB-D 78.70
Ours AFF-T RGB-D 79.50
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Table 2. The performance of the proposed boundary detection method was systematically compared with the baseline model
on the full-resolution (1024 x 2048) Cityscapes dataset
2 2. TEE T HEER(1024 x 2048) Cityscapes HIRE L RGXTEL T iR F N A S B L ERA &L

Jii CRRTE LA BloU (%)
MobileSeed AFF-T RGB 43.30
MobileSeed-d AFF-T RGB-D 42.15
AFFormer-T AFF-T RGB 41.30

Ours AFF-T RGB-D 46.39

4.3. jHRESELE

4.3.1. BGCF &t

VAl BGCF HId & i3 5 AL 0k W9 2% (1 5, FA1 14 F ESqueezeAndExcitation 5 Channel Att 7 Fi
BLEIEAT X B, IRRFF RS H e &8 LIRS KW, ESqueezeAndExcitation H A AR M:RE.
KFBEFE T H R — 4G AR SEE A 5, @9 7 Channel Att H 4> R 4 HaR A vl B 91 N [F e 75,
T B i b 45 T 3B S B e . [FINF, ESqueezeAndExcitation S /D, FRAK T id LA RS, iE
— R TR R AGRE DT . SERRAE IR AN 3 B, sk 2 S5SREG 3 3 dnl 0k NP R A L], 5
ilE T ESqueezeAndExcitation 7E4& A5 2L P A J7 T 1A Rt

Table 3. In ablation studies on the Cityscapes dataset, all metrics are expressed as (%)
= 3. 1£ Cityscapes #iE& LRUHRISR, ETEIERILU( %R

Jrik: APC ESqueezeAndExcitation ChannelAtt mloU (%) BloU (%)
#1 x v x 78.58 45.98
#2 R x v 78.77 46.27
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