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Abstract

In addressing the redundancy of degrees of freedom in whole-body motion planning for a two-
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wheeled-legged single-arm robot, this paper proposes a motion planning method based on Quad-
ratic Programming (QP) optimization. This approach treats the torso motion as an extension of the
robotic arm’s kinematic chain, modeling and controlling the arm and torso as an integrated motion
system. Taking the TITA-PiPER robot as the subject of study, a Jacobian matrix mapping between
the end-effector pose of the arm and the velocities of the seven-dimensional generalized joints is
first established. This mapping is enforced as a hard constraint to guarantee the highest priority for
the end-effector task. Subsequently, a QP problem is formulated. It minimizes joint motion jerk (or
another smoothness metric) as the optimization objective while incorporating constraints such as
joint limits, nonholonomic constraints, and dynamic balance stability. This framework allows for
the unified solving of the seven-dimensional generalized joint accelerations that satisfy the overall
motion requirements. Simulation results demonstrate that the proposed method ensures precise
execution of the end-effector task while fully utilizing the torso’s mobility to achieve whole-body
coordination. It provides an effective solution for the real-time motion control of wheeled-legged
robots with an arm.
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Figure 1. 3D model of the robot
Bl 1. #128A 3D B
Table 1. Robot link parameters
=1L IRAFHSH
Component Parameter Combinations (units) Instructions
Torso 500 x 310 x 300~490 mm | 13.2 kg L x W x H/Mass

DOI: 10.12677/airr.2026.151014 140 PNER ST IR YN


https://doi.org/10.12677/airr.2026.151014

SRR, FERID

T o e
Wheel Radius 92.7 mm | Mass 1.5 kg —
Arm Base Height 80 mm —
Upper Arm Length 285 mm | Mass 0.2 kg —
Forearm Length 215 mm | Mass 0.5 kg —
Gripper 0~70 mm |40 N | 0.5 kg Dynamic Range/Force/Mass

Table 2. Motor parameters

F* 2. BHSH
Motor Name Maximum Torque Joint Range
Hip-outside motor 120 Nm [-0.78, 0.78] rad
Hip-pitch motor 120 Nm [-3.1, 1.6] rad
Knee motor 120 Nm [-2.7,-0.69] rad
Wheel motor 48 Nm —
J1 motor — [2.69, 2.69] rad
J2 motor — [0, 3.40] rad
J3 motor — [-3.05, 0] rad
J4 motor — [-1.75,1.95] rad
J5 motor — [-1.31, 1.31] rad
J6 motor — [-1.75,1.75] rad

3. BREREMREEER

MR - LS N ARG RA RS KEs B B, f£4 B iashiRl i A TR . O SEBL T8 A
PUBKIRSHRER RS, RN P AR T3, ASCRH — M T RRIQP)RIALAL 7 % . 1% 5354 T8 R
for B P - SO B (8] R e AT R B A O R A N B LB, DL DR T8 AR A 55 BT e I
Sed, MR A2 2 A2 AR SOOI L

AERR RS LTSI, O R, NREESH R T, N TE AR R R AL T TR Ly, x il
FE NIRRT 7, 2 Fhg A R IE D5 AKTARAR &R ) BB AL T 0T T LRt x Al i KT (144
WIIERT T > z R F AR T RIRRIIE L5 2, S8 A hn, 2, H R R R s i 2 8] AR IR R ) o i
X B AR T HIRTIE DT R,z s R E AR BT 1A, FE T W E y BT A .

HUBRE B — AT R, BTN . RSS2 58 N 0, = (650,001, 6,, ]+ P BINJE
FOL1E0) 575 IL) e 11 P JR AAREAM DG -1 (G2) 1 BE + IR B AR 00 5745 (53) A1y BE (ASWE 72 SR A T 5 R T-i B3l ) 24
BN R AU SRR, IR = AR IR T 2 B S B IS B & IR R iR O R,
FEA F A AU AR = AN RATAT @RS 04 AR EE M T AT 2 LS MR AR, ST &
RGBS BN, BRSNS 1124 70 W Sz sl o 7 LA AR) o H AU LUK
EHIERE, B, HYIEIZ BRI T HEE B o, =[%,, Vo, 2,0 CRIRT-M A B SHER S
LN 0), HIZZh A2 TR TA8AR 2% 2, 4T -

DOI: 10.12677/airr.2026.151014 141 PNER ST IR YN


https://doi.org/10.12677/airr.2026.151014

FRRI, PRI

TR BARTMFRFRTA D, =[X, Ve 2] > M, FEREGEEIRLER S, +
ik Al i R S AR E:

th=wpb+EVRbph (1)
c, -s, O
H, YR=|s, ¢, s =% Y QTO%Xfi%ﬁqﬁ%mf,%&ﬁm*%ﬁ*ﬁﬁf
0 0 1
SCABFREI AT R R, £ BHE AT LR AR R
W w w T
%:F& o“p,  0"R, @)
Xy Yo 0.,
D) =8 A v 38 5 7 tHE S A AR &R R AT 3RO A :
"P, =34 (3)

TR ST AL TR AR AR P, 51 SR I g =[q, o, B MG % &
4, MR

N A BA R E R =[x e ﬁT,%Eﬂﬂ~%E§MEﬂﬁﬂqﬂ%%f,@§
YT Bh R B 48 5 TR JE YT E( . DB - LS A SN N 7, FILAHT R RS 3 [
BERIUETAT, 1R0E 2B BRIk BRI . I, HZIE SR AL B, s BB A
5 — 2L 2 2 3 R S s SR BB A BN

4.1. BFRERBI9E

BUA MRS, — R T8 R L 45 AR S E N A AN R ARE S, %R A BT A7 AE [
W, 45 A LA NSAT TR, BTS2 TR A RESEBURS B AT I, 004K 19 LR AN A7 £ 7T
TR, SBUCH . ST, ASOR T AR (L 245 B IE N BARREL NS ANIRE T 5 i3 Re
JISCVRE Y, A5 T R i 37 4 3 e D BIR S A il 38 S BB A 48 5 T

min £ (x)=[ "B B, ] Q[ "B -5, ] @

Gref

b, "B ONFE AR S H IR, B ) - o 2R E

Wlﬁhref _ wPhd + Kp(wphd _ wPh)+ Kd (wphd _ wph) (5)

"B, TR AN, B, = 3,0+ 3,6 -

T HLE AT ARE, (LA HARRSL, FER A — MOt ST 5 T X880, Mk
PTG B ST R B [ RY B | IR, T XA A 3SR AT
A FEREAL

min f (X):[Wlﬁhref _wlsh]TQ[wlﬁhref _Wlsh]+|:q_qpre:|T R[q_qpre] (6)

Oref
Horp, q AR REEHIZFEINBIILE NG AR OO S AL E, 8 an 2 e s 45 2
4=0p +(qpre +q—At)At (7)

Horb, a5 G, AR

DOI: 10.12677/airr.2026.151014 142 PNER ST IR YN


https://doi.org/10.12677/airr.2026.151014

SRR, FERID

Zt, FARBREHIE RN 5 RE 1 FEARIRAE S kO A WIssh Mt B s, R, Hlas AE S
RATEMLIR S PATEERELI AR LA E B L AT LA M a2, PRI, BEAT 4 QAR AR A R4 A

e
o

4.2. AR¥E
T R AT S E Nt e g, BSr DL FE T AT AR R i 25 A TR, B R A i N R B AT

S AEHPAT -
J.g=>b ®)
Horp
b="P" -J.qg 9)
VB =B+ K (MR R )+ Ky (P - "Ry) (10)

b 273 1 S8 00 A i DI FE P Uk 2 B 24 DG S R e A T BG5S I R o e R 4y
B (BB PO B A0 ) OO DR ) o PRIG,  b ARFR T TR i DT I B o B R TR ) A i I R R 4, BIOR
Y JO0SE PBE JOL A F A Bi B
RLRT SO AR BRI, 38R il A% L H
Q<0 + (e +GAL)AL<T (11)

Fob, q 5 AR ORI ALE TR L5

PR S TIRT IS AEE S %, « v, o 2, DR o, 8h, ERHRT 0 0 £ 5 0
YRR N 0, AT ARSI A A LIS ATEVE BB R AR ), R I R AT 138 30 5
BARSTIU EIZ . TR, 4 03) S0 7 TR0 S S BRI, 9 0024 TR A AE R 8 P R 4 K 2R«

X __ Y o (12)
CoOSa Sina
x] [1 000000
Heh, |yl=[0 1 0000 o](qpre+(qpre+qm)m)o
al (0001000

R, TR G E R SN B SRR 0E , R BSNEIMBEIN R AR, HLEE N BTEPIR A B 2480
T B I N ANE S B SRR T L O T ORI B R RIS, Mg AR R L)
e

~&<[E,, O4x3](q_qpre)33 (13)

Hr, BLAK(6) W HAREEL, BLA(8). (11)y (12)M(13) LA A rT ALK i DL T8 R fr B
55 2 1A BT SCORATT N3 FE S R ks
5 K

NS TR R A R, VEAEXUR R - BB LS AR SRAT KV o AT 55 I (s Bl I 5 4
Sy iR ek, AW TUAE Webots i FF & LA SR ST, X TITA-PIPER HLE8 N7 RS, IR
H C++ifi 5952 T QP ALII S PR HIRE 7o AU H SR I TOLBELE Y. MU A £ T 57 AR bR 2R
IR AL EHY x TR 2.0 m, FIN#Y z D7 R 0.8 m, NGRS B TR R W AT

DOI: 10.12677/airr.2026.151014 143 PNER ST IR YN


https://doi.org/10.12677/airr.2026.151014

FRRI, PRI

B BRI B AR RE -

(
—
N
| L L
x
Q)

z,(m)

X, (m/s)

O(rad)

(b)

Figure 2. Simulation images and state curves
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