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Abstract

With the gradual development of autonomous driving technology, the efficient and accurate per-
ception of small objects in the environment by vehicles (including three-dimensional positioning
and continuous tracking) has become the key to the implementation of this technology. The existing
visual methods, when the object scale is small or partial occlusion occurs, due to sparse pixel infor-
mation and weak feature expression ability, the 3D detection accuracy and subsequent tracking sta-
bility significantly decline, making it difficult to meet the real-time application requirements in
complex road scenarios. In response to the above problems, this paper proposes a 3D small object
detection and tracking framework based on feature pruning and DFC (Decoupled Fully Connected)
attention mechanism, which improves the 3D detection and tracking performance of small objects
while maintaining high real-time performance. Firstly, an image feature pruning strategy is de-
signed for the output features of the backbone network, and the candidate small object regions are
deeply mined to enhance their representation ability. Secondly, in the process of fusion of left and
right view features, a hardware-friendly DFC attention mechanism is introduced to efficiently cap-
ture long-distance pixel dependencies and enhance stereo geometric constraints. Finally, based on
the three-dimensional regression and classification results output by the detection network, a light-
weight three-dimensional multi-object tracking module is constructed to accurately associate and
update the trajectories of small objects. To verify the effectiveness of the proposed method, we con-
ducted thorough experiments on the public benchmark dataset KITTI. Comparisons with multiple
models show that this method achieves superior performance in terms of the three-dimensional
detection accuracy of small objects, real-time performance, and the stability of three-dimensional
object tracking.
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Figure 1. Overall network framework
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Figure 2. DFC-Ghost module structure
[ 2. DFC-Ghost #8544
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Figure 3. DFP module structure
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Table 1. Comparison of 3D target detection results for car categories by different methods
F 1. FRIFZERNFERZES 3D BFrteNLE R

WaRrS Easy Moderate Hard Time

BT Az
Pseudo-LiDAR 61.90 45.30 39.00 0.40s
OC Stereo 64.07 48.34 40.39 0.35s
ZoomNet 62.96 50.47 43.63 0.35s
Disp R-CNN 64.29 47.73 40.11 042s
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Pseudo-LiDAR++ 63.20 46.80 39.80 0.40s
DSGN 72.31 54.27 47.71 0.67 s

ETXHMW
StereoRCNN 54.11 36.69 31.07 0.30s
YOLOStereo3D 70.06 46.58 35.53 0.08 s
Ours 72.42 47.13 36.07 0.08 s

Table 2. Comparison of 3D target detection results for pedestrian categories by different methods
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Pseudo-LiDAR 33.80 27.40 24.00 0.40s
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BT H M
YOLOStereo3D 37.46 29.04 23.25 0.08 s
Ours 39.54 30.00 25.04 0.08 s
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Figure 4. Visual comparison of multi-object tracking results
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