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摘  要 

肝脏肿瘤是肝脏疾病领域发病率高、致死率突出的恶性病变，因此肝脏肿瘤的早期筛查工作对于降低肿

瘤恶化概率和病患的死亡率有着至关重要的意义。基于深度学习的肝脏肿瘤图像计算机辅助诊断技术，

对优化临床诊疗流程、改善患者预后具有重要意义。针对传统医学图像分割网络在肝脏图像分割任务中

深层特征提取能力不足、有效特征关注度低，进而导致分割精度欠佳的问题，本文提出一种改进型U-Net
网络模型EFF-UNet。该模型在U-Net基础架构上，在跳跃连接处嵌入了EFF模块，该模块整合了高效通道

注意力(ECA)、空间注意力(SA)、高效注意力门控(EAG)三种注意力机制，核心目标是解决传统U-Net跳
连过程中浅层/深层特征融合不充分、有效特征关注度低的问题。在肝脏图像分割专用数据集上的实验结

果表明，EFF-UNet模型的Dice相似系数与平均交并比(mIoU)分别达到72.36%和69.32%，相较于原始U-
Net模型，两项核心分割指标分别提升2.42个百分点和1.74个百分点。研究结果证实，EFF-UNet可有效

提升肝脏肿瘤图像分割精度，为临床肝脏肿瘤辅助诊断提供了一种更具潜力的技术方案。 
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Abstract 
Liver tumors are malignant lesions with high incidence and prominent mortality in the field of liver 
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diseases. Therefore, early screening of liver tumors is of crucial significance for reducing the prob-
ability of tumor progression and the mortality rate of patients. Deep learning-based computer-
aided diagnosis technology for liver tumor images plays an important role in optimizing clinical 
diagnosis and treatment processes and improving patient prognosis. Aiming at the problems that 
traditional medical image segmentation networks have insufficient deep feature extraction capa-
bility and low attention to effective features in liver image segmentation tasks, which further lead 
to poor segmentation accuracy, this paper proposes an improved U-Net network model named EFF-
UNet. On the basis of the U-Net basic architecture, this model embeds an EFF module at the skip 
connections. The module integrates three attention mechanisms, namely Efficient Channel Atten-
tion (ECA), Spatial Attention (SA) and Efficient Attention Gating (EAG). Its core goal is to solve the 
problems of insufficient fusion of shallow and deep features and low attention to effective features 
during the skip connection process of the traditional U-Net. Experimental results on a dedicated 
dataset for liver image segmentation show that the Dice Similarity Coefficient and mean Intersec-
tion over Union (mIoU) of the EFF-UNet model reach 72.36% and 69.32% respectively. Compared 
with the original U-Net model, the two core segmentation metrics are improved by 2.42 percentage 
points and 1.74 percentage points respectively. The research results confirm that EFF-UNet can ef-
fectively improve the segmentation accuracy of liver tumor images, providing a more potential tech-
nical solution for clinical computer-aided diagnosis of liver tumors. 

 
Keywords 
U-Net, Deep Learning, Tumor Image Segmentation, EFF Module 

 
 

Copyright © 2026 by author(s) and Hans Publishers Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
 

1. 引言 

随着社会经济的发展与人们饮食生活水平的提升，肝脏疾病的发病率呈现持续上升趋势，其中肝脏

肿瘤作为一类高发性、高致死率的恶性病变，已成为威胁人类健康的重大公共卫生问题。快速精准的肿

瘤图像分割是临床诊断、治疗方案制定及预后评估的关键前提，不仅能显著提升医生的诊断效率、降低

工作负荷，还能为肿瘤的精准治疗提供量化依据，为患者争取宝贵的治疗时间。因此，开发高效的肝脏

肿瘤图像分割技术具有重要的临床价值与现实意义。 
在深度学习技术广泛应用之前，肝脏图像分割算法主要依赖阈值法、区域增长法、分水岭法等传统

算法[1]。然而，这类方法存在显著局限性：一方面对图像噪声、灰度不均匀性等因素高度敏感，鲁棒性

不足；另一方面难以捕捉肝脏肿瘤复杂的形态特征与边界信息，导致分割精度偏低，难以满足临床实际

需求。近年来深度学习技术迎来爆发式增长并在医学图像分割领域展现出卓越性能，一系列基于深度卷

积神经网络的分割方法被相继提出。例如，朱闻韬等提出 DA-Tran 域自适应 Transformer 网络[2]，用于

从多相 CT 图像中实现肝肿瘤分割，铃木健司等研发出 MHP-Net 多尺度 Hessian 增强型基于块的神经网

络[3]，可在极小数据集下完成肝脏肿瘤的精准分割；夏栋等将深度学习进一步地应用在肝脏肿瘤 CT 图

像分割领域中[4]。这些研究为肝脏肿瘤分割提供了新的思路与技术支撑，极大推动了该领域的发展，但

如何进一步提升复杂场景下的分割精度与鲁棒性，仍是当前研究亟待突破的核心挑战。具体而言，临床

肝脏影像中普遍存在肿瘤体积微小、边界模糊不清、与周围健康肝组织灰度值高度重叠等问题，传统改

进模型往往难以精准捕捉这类低对比度、小目标病灶的特征信息；同时，不同患者的肿瘤形态、位置存
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在显著个体差异，部分病例还伴随肝硬化、血管侵犯等并发症，导致现有算法的泛化能力受限，在跨中

心、跨设备的影像数据上易出现分割性能下降。此外，临床诊疗对分割结果的实时性要求日益提高，如

何在保证分割精度的前提下，简化网络结构、降低计算开销，实现快速推理与临床部署，也成为制约技

术落地的关键瓶颈。 

2. 相关技术发展 

U-Net 网络发展 

自 2015 年 Ronneberger 等人提出 U-Net [5]以来，该网络凭借“编码–解码 + 跳连特征拼接”的核

心架构，确立了医学图像分割领域的经典范式。其对称 U 型结构通过下采样提取语义、上采样恢复分辨

率，并利用跳跃连接(Skip Connection)弥补了深层网络丢失的空间细节，成为生物医学分割任务的基石。 
为了进一步强化网络对病灶区域的聚焦能力，Oktay 等人提出了 Attention U-Net [6]。该模型针对传

统 U-Net 在处理形状多变、尺寸极小的目标时容易受背景噪声干扰的问题，创新性地在跳跃连接处引入

了注意力门(Attention Gate, AG)机制。通过利用深层粗粒度特征作为门控信号，AG 能够自适应地抑制背

景区域的特征响应，同时增强目标区域的特征权重，在无需增加额外计算开销的前提下，显著提升了模

型对胰腺等复杂器官的分割灵敏度。 
在提升特征表征能力方面，Alom 等人结合循环神经网络与残差网络的优势，提出了 R2U-Net (Recur-

rent Residual U-Net) [7]。该架构利用循环残差卷积单元(RRCU)替代传统卷积模块，通过在离散时间步内

进行特征累积，实际上增加了网络的有效深度。这种设计不仅通过残差连接促进了梯度的有效传播，还

利用循环结构实现了同一层级内的特征复用，使得网络能够以更少的参数量提取出更丰富的多尺度特征，

尤其适用于视网膜血管等精细结构的分割任务。 
进入 Transformer 时代后，针对三维体数据的全局建模需求，Hatamizadeh 等人提出了 UNETR (UNet 

Transformers) [8]。不同于仅在瓶颈层引入 Transformer，UNETR 将 3D 体素块直接作为序列输入到纯

Transformer 编码器中，利用自注意力机制捕捉全图范围内的长距离依赖关系，并通过卷积解码器逐步恢

复分辨率。该方法有效突破了 3D CNN 感受野局限，在脑肿瘤和脾脏等多器官分割任务中展现了对复杂

解剖结构的强大建模能力。 

3. 改进 U-Net 网络模型 

3.1. EFF-UNet 网络 

在医学图像分割任务中，特征融合的有效性直接决定模型分割精度，传统 U-Net 及其变体通过跳跃

连接实现编码器低层次特征与解码器高层次特征的融合，但存在三大核心问题：一是低层次特征与高层

次特征相关性较弱时，直接融合易引入冗余信息；二是特征融合过程中未能针对性强化任务相关特征，

导致特征可分辨性不足；三是传统融合机制计算复杂度较高，难以在参数受限场景下高效运行。 
为解决上述问题，模型采用高效特征融合(Efficient Feature Fusion, EFF)模块。该模块以多注意力机制

协同工作为核心设计理念，第一，通过增强注意力门控机制弱化无关区域特征的干扰，提升跨尺度特征

的相关性；第二，结合通道注意力与空间注意力，实现特征维度与空间位置的双重优化；第三，在保证

融合效果的前提下，控制计算复杂度，确保模型的高效性与实用性。模块整体结构如图 1 所示，主要由

增强注意力门(Enhanced Attention Gate, EAG)、高效通道注意力(Efficient Channel Attention, ECA)和空间注

意力(Spatial Attention, SA)三个子模块串联组成，形成“特征增强–维度优化–空间聚焦”的递进式融合

流程。 
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Figure 1. EFF-UNet network architecture 
图 1. EFF-UNet 网络结构 

3.2. EFF 模块 

在医学图像分割任务中，特征融合的质量直接决定了分割精度的上限。尽管传统 U-Net 及其变体通

过跳跃连接实现了编码器浅层特征与解码器深层特征的融合，但现有机制仍面临三大瓶颈：首先，浅层

细节与深层语义之间存在显著的“语义鸿沟”，简单拼接易引入背景噪声与冗余信息；其次，特征融合

过程缺乏对任务相关区域的针对性增强，导致边界模糊或特征辨别力不足；最后，传统复杂注意力机制

往往伴随高昂的计算成本，难以满足临床实时性需求。 
针对上述问题，本研究提出了一种高效特征融合(Efficient Feature Fusion, EFF)模块。该模块遵循“多

注意力协同与轻量化设计”的核心理念，旨在实现高精度的特征重校准。如图 2 所示，EFF 模块采用串

联结构，依次由增强注意力门(Enhanced Attention Gate, EAG)、高效通道注意力(Efficient Channel Attention, 
ECA)和空间注意力(Spatial Attention, SA)构成，形成了一套“特征净化–维度加权–空间聚焦”的递进式

优化流：EAG 模块通过改进的门控机制，有效抑制无关背景区域的特征响应，显著提升跨尺度特征的语

义一致性；ECA 与 SA 模块分别从通道维度和空间维度对特征进行双重精细化校准，在强化关键特征表

达的同时，捕捉细微的形态变化；整个模块在保证优异融合效果的同时，严格控制了参数量与计算复杂

度，确保了模型在资源受限场景下的高效实用性。 
EAG 模块是 EFF 模块的前置特征增强单元，基于传统注意力门(AG)改进而来，核心解决传统 AG 计

算复杂度高、数据依赖性强的问题。具体设计如下：采用分组卷积(GroupConv32)替代传统卷积进行组内

特征融合，分组数设为 32。分组卷积通过将特征图按通道分组并行计算，在保持特征表达能力的同时，

显著降低计算复杂度。在特征处理流程中，对编码器通过跳跃连接传递的低层次特征(x)和解码器上采样

得到的高层次语义特征(g)分别进行分组卷积、批量归一化(BN)和 ReLU 激活操作，得到处理后的特征 Wx

和 Wg，计算过程如公式(1)和(2)所示： 

 ( )( )( )32  ReLU BN GroupConvgW g=  公式(1) 

 ( )( )( )32  ReLU BN GroupConvxW x=  公式(2) 
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Figure 2. EFF module 
图 2. EFF 模块增强注意力门 

 
相较于传统 Attention Gate 使用的 1 × 1 标准卷积，EAG 采用分组数 G = 32 的分组卷积 3。这种设计

的核心动机在于：在处理 512 × 512 高分辨率 CT 图像时 4，标准卷积的参数量随通道数平方级增长，而

分组卷积能将计算开销降低至原来的 1/G。这使得模型在嵌入三个连续注意力子模块时，仍能保持较快

的推理速度，满足临床实时诊断的需求。 
为缓解高低层次特征相关性较弱时的性能退化问题，引入残差连接机制，对低层次特征进行保护。

通过 Sigmoid 激活函数生成注意力权重，对低层次特征进行自适应加权增强，最终输出增强后的特征，

整体计算如公式(3)所示： 

 ( ) ( )( )( )( )1 1 EAG , 1 Sigmoid Conv ReLU g xg x x W W×= × + +  公式(3) 

3.2.1. 高效通道注意力(ECA) 
ECA 模块旨在通过建立通道间的局部上下文关联，实现特征通道权重的自适应分配。与传统通道注

意力机制不同，ECA 摒弃了可能导致信息丢失的降维操作，转而采用更高效的直接处理策略。首先，模

块对拼接后的特征图并行执行全局平均池化(GAP)与全局最大池化(GMP)，在压缩空间维度的同时聚合全

局通道统计特征；随后，利用一维卷积(Conv1d)在保持通道维度不变的前提下，精准捕捉通道间的局部邻

域依赖关系；最终，经由 Sigmoid 函数激活生成的注意力权重向量对原始特征图进行逐通道乘法加权。

这一过程实现了特征的重校准，有效凸显了对分割任务至关重要的关键通道，同时抑制了冗余特征的干

扰。 

3.2.2. 空间注意力 
作为高效特征融合模块的末端环节，空间注意力(SA)模块旨在进一步捕捉特征图内的空间依赖关系，

以强化目标区域的定位表达。该模块接收经 ECA 模块通道校准后的特征图作为输入，通过对空间维度进

行深度统计建模，生成反映像素级重要性的空间注意力权重图。在生成的权重图中，高响应值精确对应

医学图像中的病灶或目标器官区域(Region of Interest, ROI)，而低响应值则有效抑制了背景噪声及非相关

组织的干扰。通过将该权重图与输入特征进行逐元素相乘(Element-wise Multiplication)，SA 模块实现了对

特征图的空间重构，显著提升了特征的空间分辨力，为后续分割网络提供了更精准的边界与位置信息。 

https://doi.org/10.12677/airr.2026.151031


陈煌展 等 
 

 

DOI: 10.12677/airr.2026.151031 323 人工智能与机器人研究 
 

4. 实验分析 

4.1. 实验环境 

实验通过 PyTorch1.11.0 框架实现，操作系统使用 Ubuntu20.04，Python 版本为 3.8 版本，CUDA 为

11.3 版本，GPU 采用一台 NVIDIA GeForce RTX4090D。实验参数设置：epoch 为 100，batchsize 为 16，
学习率为 0.00001，采用 Adam 优化器。 

4.2. 数据集 

本实验数据集采用 DIRCADb-01 (3D Image Reconstruction for Comparison of Algorithm Database)数据

集由法国Rennes大学的研究人员创建，包含了来自不同医院的 20个病例的CT体数据，厚度为 1.0 mm~4.0 
mm，横断面切片大小为 512 × 512，数量在 1 到 46 之间。各图像均由专业影像医师对图像中的不同器官

或组织进行了标注。为防止过拟合问题的出现以及增加训练数据、提高模型泛化能力，并提高模型对变

形、旋转、尺度变化等因素的鲁棒性，本文对预处理后用作模型训练的样本以在线增强的方式进行了数

据增强[9]。实验采用了随机裁剪、随机水平或垂直翻转、边缘填充和光度失真四种方法对即将输入网络

的训练样本及其标注进行处理，并通过设定足够的迭代次数间接实现训练样本量的增加。最后得到 1639
张训练样本，并按照 7:1:2 的比例划分为训练集[10] (1147 张)，验证集(164 张)，测试集(328 张)。 

4.3. 损失函数 

肝脏图像分割任务中，单一损失函数难以同时解决类别不平衡、边界分割不准确及特征区分度不足

等问题。传统二分类交叉熵损失(BCELoss)虽能缓解梯度消失问题，但对医学图像中前景(肝脏区域)与背

景(周围组织)的样本数量差异敏感，易导致模型偏向预测多数类；而 Dice 损失虽能通过计算预测区域与

真实区域的重叠度强化边界匹配，但在训练初期易出现梯度震荡，影响模型收敛稳定性。为兼顾分割精

度、边界完整性与训练稳定性，本文采用 Dice 损失与交叉熵损失加权融合的混合损失函数，充分发挥两

种损失函数的互补优势，提升模型对肝脏区域的分割性能。混合损失函数的核心设计思路是：以 Dice 损

失为主导，强化区域重叠度约束，提升边界分割准确性；以交叉熵损失为辅助，优化梯度传播特性，保

证模型稳定收敛。同时，通过动态权重调整策略，适配训练不同阶段的优化需求。混合损失函数的表达

式如公式(4)所示： 

 total 1 Dice 2 CE   L L Lλ λ= × + ×  公式(4) 

总混合损失( total L )、权重系数( 1λ )、Dice 损失( DiceL )、交叉熵损失( CEL )，以及设定的权重值 1λ ， 2λ ，

用于解释混合损失函数的构成及参数设置。 

4.4. 评估函数 

为了定量评估所提模型在肝脏图像分割任务中的性能，本研究选取了医学图像分割领域通用的 Dice
相似系数(Dice Similarity Coefficient, DSC)和平均交并比(mean Intersection over Union, mIoU)作为核心评价

指标。其中，DSC 主要用于度量模型预测分割掩膜与真实标签(Ground Truth)之间的集合相似度。DSC 的

计算公式定义如公式(5)所示： 

2
DSC

M N
M N

=
+


 

其中，M 表示预测值像素的集合，N 表示标注金标准的像素的集合。DSC 的取值范围为[0, 1]，其数值越

趋近于 1，表明预测结果与金标准的重合度越高，反映出模型的分割性能越优越。 
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mIoU 表示预测结果与标注金标准的交集与并集的比值，平均交并比的值越大表示预测结果与标注金

标准的重合度越高，意味着模型分割性能越好。平均交并比的计算公式如公式(6)所示： 

mIoU
M N
M N

=




 

通过预测分割结果集合与真实标签集合的交集和并集的比值，衡量分割的准确性，值越接近 1 说明

分割效果越好，是图像分割领域经典且核心的评价指标。 

4.5. 实验结果分析 

为了全面且客观地验证所提 EFF-UNet 模型在医学图像分割任务中的有效性与优越性，本研究设计

了严谨的对比实验。实验选取了医学分割领域具有里程碑意义的经典架构作为基准(Baselines)，具体包括：

作为领域基石的U-Net、通过密集连接优化特征融合的U-Net++、引入残差学习机制以加深网络的ResUNet，
以及利用门控机制增强特征筛选能力的 Attention U-Net。通过与上述主流模型在同一实验环境下的横向

对比，旨在量化评估 EFF-UNet 在特征提取与分割精度的性能提升。具体实验结果如表 1 所示。 
 

Table 1. Comparison of segmentation performance of different models on liver 
tumor CT images 
表 1. 不同模型在肝脏肿瘤 CT 图像上的分割性能对比 

Method Dice Score (%) MIoU (%) 

U-Net 62.17 52.46 

U-Net++ 68.32 58.63 

Attention-U-Net 70.35 67.95 

EFF-UNet (Ours) 72.36 69.32 

 
基础 U-Net 模型由于特征融合机制简单，Dice 得分仅为 62.17%。虽然 U-Net++和 ResUNet 通过结构

优化将 Dice 提升至 68%~69%区间，但在处理肿瘤边缘细节时仍显不足。Attention U-Net 利用注意力机制

实现了 70.35%的 Dice 得分和 67.95%的 mIoU。 
相比之下，本文提出的 EFF-UNet 实现了 72.36%的 Dice 得分和 69.32%的 mIoU。与次优模型 Attention 

U-Net 相比，Dice 和 mIoU 分别提升了 2.01%和 1.37%；与基准 U-Net 相比，Dice 提升幅度更是高达

10.19%。这一结果有力地证明了 EFF 模块在多尺度特征融合与背景噪声抑制方面的优势，能够有效应对

肝脏肿瘤分割中目标微小且形状不规则的挑战。 

4.6. 模型分割结果分析 

4.6.1. 实验结果可视化 
为了直观且深入地评估模型在复杂解剖场景下的分割效能，本文在 3D-IRCADb-01 测试集上进行了

可视化对比验证(如图 3 所示)。通过对比分割结果可以发现，本文所提方法在处理边缘模糊区域及微小肿

瘤病灶时展现出显著优势，有效克服了传统方法难以应对复杂解剖结构的局限性。 

4.6.2. 统计显著性分析 
为了验证 EFF-UNet 模型性能提升的稳定性和科学性，本研究对测试集的所有切片结果进行了统计

学处理。如图 4 所示，EFF-UNet 在 Dice 相似系数和 mIoU 两个核心指标上均显著优于对比模型。与基准

模型对比：相比于原始 U-Net，EFF-UNet 的 Dice 指标从 62.17%大幅提升至 72.36%，配对 t 检验显示 
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Figure 3. Segmentation results of the network model 
图 3. 网络模型分割结果 

 
该提升具有极显著的统计学意义，这有力地证明了 EFF 模块通过增强特征聚合，克服了基础网络在复杂

背景下的分割疲软问题。与次优模型对比：与引入了注意力机制的 Attention-U-Net (Dice 70.35%, mIoU 
67.95%)相比，EFF-UNet 依然实现了 2.01%的精度跨越。统计分析显示其 p 值小于 0.05，这表明 EFF 模

块中“特征净化–维度加权–空间聚焦”的递进式设计，比单一的注意力门控机制(AG)能更有效地识别

微小肿瘤边界。结果稳定性：误差棒显示 EFF-UNet 的标准差(Standard Deviation)相对较小，反映了模型

在处理 3D-IRCADb-0 数据集中不同病例时具有更强的鲁棒性。 
 

 
Figure 4. Comparison of segmentation performance with statistical significance 
图 4. 统计显著性的分割性能比较 
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5. 局限性与讨论 

分割失败案例分析：通过对测试集误差较大的案例进行追溯发现，模型在以下场景中表现尚不理想：

极微小病灶丢失(如图 5 所示)：当肿瘤体积微小且处于肝脏边缘时，即便有 EFF 模块增强空间关注度，

由于下采样导致的细节丢失依然无法完全通过跳跃连接弥补，导致部分像素级别的欠分割。 
 

 
Figure 5. Loss of extremely small lesions 
图 5. 极微小病灶丢失 

 
针对上述局限性，未来研究将从以下两个方向展开：引入 Transformer 全局建模：参考 UNETR 等架

构，探索在 EFF 模块中嵌入自注意力机制，以捕捉更长距离的依赖关系，提升对不规则大尺寸肿瘤的整

体建模能力。动态损失函数调整：优化公式中的权重系数，尝试引入 Focal Loss 以增强模型对难分样本

(如微小病灶)的关注度，进一步提升分割精度的上限。 

6. 结语 

本研究聚焦于医学影像领域肝脏肿瘤 CT 图像的精确分割难题，针对传统 U-Net 及其变体在跨尺度

特征融合过程中存在的语义鸿沟、特征冗余以及有效特征关注度不足等问题，提出了一种嵌入高效特征

融合(EFF)模块的改进型深度学习网络架构：EFF-UNet。 
EFF-UNet 的核心创新在于其跳跃连接中嵌入的 EFF 模块，该模块集成了增强注意力门控(EAG)、高

效通道注意力(ECA)和空间注意力(SA)三种机制，构建了“特征净化–维度加权–空间聚焦”的递进式特

征重校准流。EAG 模块通过改进的门控机制，有效增强了跨尺度特征的语义一致性，而 ECA 与 SA 模块

则从通道和空间维度对特征进行了双重精细化加权。 
在 DIRCADb-01 数据集上的定量实验结果有力地证明了所提模型的有效性和优越性。EFF-UNet 模

型在核心评估指标上均超越了包括 U-Net、U-Net++和 Attention U-Net 在内的经典分割基准。具体而言，

EFF-UNet 的 Dice 相似系数(DSC)达到了 72.36%，平均交并比(mIoU)达到 69.32%，相较于次优模型 At-
tentionU-Net，DSC 和 mIoU 分别实现了 2.01%和 1.37%的提升。研究结果证实，EFF-UNet 架构能够显著

提升复杂肝脏肿瘤 CT 图像的分割精度与鲁棒性，特别是对于边界模糊及微小病灶的识别具有显著优势。 
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