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Abstract
Aiming at the problem that it is difficult to guarantee the trajectory tracking accuracy and stability
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atthe same time during the motion control process of self-driving vehicles under the road curvature
and different speed conditions, a kind of auto-resistant control (ADRC) algorithm is designed to ob-
tain the front-wheel turning angle by controlling the transverse error in order to guarantee the track-
ing accuracy and stability of the vehicle and the key parameters of the traditional proportional-inte-
gral-derivative (PID) and ADRC are rectified at the same time based on the particle swarm optimi-
zation algorithm, so as to further illustrate the control effect of the designed algorithm. The key
parameters of traditional proportional-integral-derivative (PID) and ADRC are simultaneously ad-
justed based on the particle swarm optimization algorithm to further illustrate the control effect of
the designed algorithm. The control algorithm has the advantages of low model accuracy require-
ments, high adaptability, as well as the ability to estimate and compensate for unknown disturb-
ances. The algorithm is validated and compared with the PID algorithm on the Matlab/CarSim joint
simulation platform at different vehicle speeds in the same double-shifted line condition. In addi-
tion, in order to further verify the advantages of the proposed algorithm, the two algorithms are
also compared and analyzed in real vehicle experiments. The simulated real-vehicle results show
that the proposed ADRC control algorithm has stronger robustness and can effectively improve the
vehicle jitter problem caused by the change of road curvature and different speeds, and realize
more accurate and stable trajectory tracking effect.
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Figure 1. Schematic diagram of the dynamic model
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Figure 3. Block diagram of the self-disturbance rejection control principle
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5. ADRC 1R EUHE ]

z1

e
23 y
TR IR Y

33 XESHEE

2 1] 25 1) DB 2 BNV A2 A D 2 1 25 2 75 08 B i P R R BR 4B A, AR 40l PID #5388 = A5 2
WIS HK, . ki Ky o 5165 PID BEHIZAALL, ADRC AR TAF IR HIACR, HRM 2.2 7T,
ADRC fAEHIZ ¥t %2, & PID ()44, BR ADRC HI=ANER S E0H T A, B4R 4548,
Sz A BSRIRA Y, BEEE ST T, Xt T ADRC SkAESEBR N FH A3z R . DLt g
=B B LA bl 28 01, TD MOH BB T hy « REEDK h FIEER T r; ESO 0 IR m iz
Ha . a,. ay o IR wy « RGAMERE b, : NLSEF #r H ALt Ha, . a, . o ML),
WG R B B, o I KE IS5 SR B AN 7 ELSRB8 /rMr nl 0, BPURE R a8t S8 E w,y
by~ B~ B, WU FE SR IRAL, Fe S H 8 R FOR 43 ] 28 10 s e R 38 W] B B A e AR 1]
LG, O T 3RAS PR AN ) 25 R e P 25 SR B R4 T AL Re % PR 2 TAR &, SRR TR AL 2Rk A
AR R S O T IR AL E .

PR

T TR B A 0 ) i A AN S IR FR [ 12]-[14] T AR A8 Bk B R AT S RO B Nk RS
T FRE . B o B8R R AR B B 2 A O BITLE o FEREAT 2R 00 300 R B A2 F B, S e S 2 7 A R TR I %
FEZ SR B h, K EA LU U 1) ARG IR S SR, RGN E T
G2 UM AU B (CE RO R, RGN R, EWEA S HIEE: 2) MRGEXKHE RS
BF2% 5= R 3) $&IEs BBy o SR R g N TPUE, BIRECK: 4) KA SRR
REl, ARG G HBUB R B L DY 5 A A 1 5 DR T 3 U SR I S AR I R, 4R
BRGNP FoE . dEfTE, FoRZEMEReR AL, W —ANE R TFR 2P 5 H AR ek o m gz
H N AR 56 1) 10 T 0 (1 365 97 R R T BB TR o N AE ST IS B X RGO I BEREAT T —Fh LR
X2 R CARE A () B b e T RGN PR R s A B, (L0 B Ay, SRS, AR R G
L, (H RIS TR A R R . BRI, IO TG, #6884 BB SR AR FELR
HIEHME 5 A RR A R 2, T IR s EHE S P, XA TR RGN T e, e R
SRR N AR, AN Rk 7R . DRI R IR IO R R IA A

T 2 (du, 2 B
J:L[%@)+Gaq]m_o (16)

DOI: 10.12677/airr.2026.151034 358 PNER ST IR YN


https://doi.org/10.12677/airr.2026.151034

M, JESE

IW%eAU%ﬁﬁﬁﬁ,%%%Eﬂﬁkmﬁwﬁ,m%ﬁﬂ%kﬁ%%%ﬂi,T%ﬁﬁﬁﬁﬁ%H
3 TE] o

KM@%W,ﬁﬁmﬁ@ﬁ%J=E%ﬁfm,ﬁﬁ%ﬁ—ﬁ%%E&Maiwmmaﬁﬁﬁ%%ﬁﬁ
iRz e, (t) E e, (t)=0, MAGETTI, XA BT RME, A bR Bt 75 200 BB - ks A H
(Euler-Lagrange) /7 2, HEEHN:

afa) a_ an
dt6ey %
XF=R6) R k& B H & L A:
du, )
L=e, (1) + [d—ty] (18)
X e, Kok H] LS 2
e, (t)=0 (29)

PR P A S 3 V2 FEZ B 500 N A2 50 JUR AN I 725 53 TR 175 790 S #1345 ) (OB 1 i 22 AE BRAEI 0 1 #8
0, ERMURAIEN T, WA BEMPLIENIL SSHPL e B, BAEMIRE. XMBEEWRE
RGRR USRI 2, B2 20 O S i hl i, X EBRRARF AR EORI. Rk
IRNAE ST I, et R B2 2 R B8R Ak 5 21 1) S5 D 38 58 2 307 AT e BR s B AN (S RE B i/ e 3 22,
I REM L TR R A AL . ARSI A 15 R U U BPUL I TR, AT R
A, X AT LA R GUH B PR AR AR ST TG

4. (FERES Y
4.1. Matlab/CarSim {H EE &

NT B ADRC SR AE SR PR R4 ] vh N, @I 7E Simulink W5 @ SR AR RS, I HLFIZEXUFE
TR 5 Carsim BEATECA 07 E, HEARR) Simulink A8 40 B (& 6).

GO——— pre_x
x
®—> y pre_y|— il
y
hi
> B e
phi Py Steer Angle |
olu Steer Angle
i
“ >
.—->—> b v o ] 4-‘ : T
v ] dot_phi 4 err
fen
[@»' .>—. dot_phi  pre_dot_phi -@]
dot_phi xr
preerE e [ }— 4@
i @
n[—wm
E—’ «
phi_ddot
phi_ddot

err,k computing module

Figure 6. ADRC model diagram
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Figure 8. Simulation results for a double lane change maneuver at 60 km/h
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Figure 9. Experimental platform diagram
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Figure 10. Experimental results for the double lane change maneuver at 20 km/h
[ 10. 20 km/h Lk T SLIEER

DOI: 10.12677/airr.2026.151034 363 PNER ST IR YN


https://doi.org/10.12677/airr.2026.151034

X, JESE

1 T T T T T
- Target trajectory /

09 Ff ADRC /
*_PID 4

ADRC
PID ||

08

0.7

0.6 [

0.4

B H(Cs)
|

03[

0.2

0.1

0 0.2 0.4 0.6 0.8 1 0 5 10 15 20 25 30
X/m I} /s

@) (b)

Figure 11. Experimental results for the double lane change maneuver at 30 km/h
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