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Abstract

To address the high-precision trajectory tracking control requirements of a six-degree-of-freedom
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Stewart parallel platform during its unconstrained motion phase, this paper conducts research on
an Active Disturbance Rejection Control (ADRC) method based on an Extended State Observer (ESO).
Aiming at the problems of model uncertainty and external disturbances when the platform operates
in free-motion space, a complete ADRC framework is designed. Firstly, the unconstrained motion
dynamics model of the platform is established. Then, an improved stabilized ADRC algorithm is pro-
posed. This algorithm utilizes the ESO to estimate and compensate for the total disturbance in real
time. By introducing an adaptive ESO bandwidth adjustment mechanism and a saturation nonlinear
function, it solves the control input oscillation issue and achieves online parameter self-tuning.
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Figure 3. Comparison of ADRC tracking trajectory and desired trajectory in the x-direction
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Figure 4. Comparison of ADRC tracking trajectory and desired trajectory in the y-direction
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Figure 5. Comparison of ADRC tracking trajectory and desired trajectory in the z-direction
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Figure 9. Printing press sleeve assembly robot

& 9. ENRIHBERECHERA

Figure 10. Stewart six-degree-of-freedom parallel platform
10. Stewart XEHEHEKTEE

NIGAEBGIE B ST AR AT, X Stewart 75 B 1 IFERF- &, BEATSEIGIGAE, {3 H] BERR (K
WA G ML, KPR & FL S B R 72 Excel 11, S\ MATLAB #/FEAT Hh 2k 21

LU 1. NIEFEH S S, AT ARRENIIA 5 kg FIFERTHE, DIREIRONSIHE R8T &
WAL, SR ZGEEAT XS b o SN SR B AN S8 i Y BRI A 1] 11 B

Figure 11. Stewart six-degree-of-freedom parallel plat-
form and gyroscope
11. 5 kg BT 2 FHE FFEARIX

DOI: 10.12677/airr.2026.151032 339 PNER ST IR YN


https://doi.org/10.12677/airr.2026.151032

MR 5

AN JE S th 25 0 B AR EL s A 12 s

8

T T
— fisui Lk
75 B BB I & ADRCERBA i 2%
75
7
<]
&
65 f t
s
55 1 Il Il 1 1 Il Il Il 1
o 1 2 3 4 5 6 7 8 9 10

Figure 12. Comparison of experimental and simulation curves

[ 12, st3bHhzk S EZIIEE

Ui FAB A SEBR M 2RI ARV &, TN Sk B R BNME L 0.45 B2, fEEHISS M ER T, 4
1.6 s J5 FEIEWHE T A . B n] W ook | Brit i dl o T R T BT T, Farferk
PEEL R

T 2. B GRERER, TGO 5 kg FUERIE, W =REH R EHIR . =M
J7iE Bt 2 e 13 Fr

8

B | | | ——ADRCHRE | |
e e R R
——PID#RE

76

7.4

72

7

68|
g 66| / |
64l
62l
6L
58|
56|

54

5.2 I | I I I I | I I
0 1 2 3 4 5 6 7 8 9 10

i 1H] (8)

Figure 13. Algorithm comparison
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