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Abstract

Phytoplankton are major contributors to primary productivity in tropical coastal ecosystems, and
their community structure is highly sensitive to changes in nutrient conditions. In this study, syn-
chronous sampling was conducted at 12 stations across four typical coastal regions of Hainan Island,
including Wanning, Wenchang, Dongfang, and Lingao. Phytoplankton species composition and cell
density were investigated, together with key physicochemical parameters such as total nitrogen
(TN), total phosphorus (TP), ammonium ( NH} ), and chemical oxygen demand (COD). Non-metric

multidimensional scaling (NMDS), permutational multivariate analysis of variance (PERMANOVA),
redundancy analysis (RDA), and similarity percentage analysis (SIMPER) were applied to examine
spatial differences in phytoplankton community structure and to identify major environmental
drivers. Shannon diversity index and species richness were calculated to assess community diver-
sity. The results showed significant spatial differences in phytoplankton community composition
among the four regions (PERMANOVA, p < 0.05), with diatoms as the dominant group. Nutrient gra-
dients, particularly TNand NH, were identified as the primary environmental factors influencing

community variation. SIMPER analysis indicated that several diatom species, including Skele-
tonema costatum, Skeletonema tropicum, and Thalassionema nitzschioides, contributed most to re-
gional community differences. Species richness did not differ significantly among regions, whereas
Shannon diversity index showed significant spatial variation (p < 0.05).
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Figure 1. Taxonomic distribution of phytoplankton in Dongfang
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Figure 2. Taxonomic distribution of phytoplankton in Lingao
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Figure 3. Taxonomic distribution of phytoplankton in Wanning
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Figure 4. Taxonomic distribution of phytoplankton in Wenchang

4. XEFIHEMERD T

BT (WNQ))
05 Stress =0 E"—F(WN@;)
’ FT(WN(2))
XE(WC(1)
0.0 aa 3))
X
? o5+
9 @ %5
> MHEERER A (mg/L) @ 5m
=Xz (mg/L) o xB8
05 IEE(LGR))
IEE(LGE)
& (LG(1))
-1.0
B& (mg/L)
-1.0 -0.5 0.0 0.5
NMDS1
Figure 5. NMDS
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Table 1. Results of Adonis analysis
%2 1. Adonis 7T H£ER

T H SEIT R R2 F {4 pfE
PR (HIX) 3 2.2303 0.7896 9.9917 0.001"*
B 8 0.5953 0.2107
SR 11 2.8256 1.0000
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Figure 6. Boxplots of water quality physicochemical parameters in four regions
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Table 2. Multicollinearity diagnosis
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57~ AT LUR R T a2 b [2] [11]

$5F Hellinger $548 )5 (REE M BE 5K FOABER 7 (TN, TP, NHJ , COD)iH{T RDA HEF 40 #r. Aisif
P S 3L AR AR S3.4% M IE 258 5, Hovh RDAL % 37.1%, RDA2 fiffe 16.3 (&1 7), FBHEZLIREH
JEE Bt 05 5 U M MR 55 S ()Y I RO B 9 22 5 [2] (4] TN R NHG MRSk KRR, R R S ks N+, I
)8 77 Eh B e e = X 3. TP 530 B R ] — 38, RHXN ST BB 45 BAA 0. COD F 2
TRITHB SETAR DG o T TR Oz 88 £ AT IE , RIUNBERE 77 30K P BAR B SZ A & X7 (7K 36 77)

FER[1][7110]
RIL/SRDAHEFE ( ZIBRITIEERER S )
X
o | -
; &2
CEE ag/L)” o 5 s
e X8
w_|
o
<
&
=) .
N S A (e .8
5 ° “cob
x
A& ( )
0
2
[ )
d [ ]
I | I I
1.0 05 0.0 05

RDA1 (37.1%)

Figure 7. RDA ordination diagram
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Table 3. SIMPER contribution table
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Figure 8. Comparison of species richness (Rich) among four regions

& 8. MAMHX¥MEEE (Rich) bR E

3 K-W test p = 0.0156

o= > ®
™ o= 1 [X
E ¢ a f)
c2 ¢ BT
: - | 1=
% o lhE
-l% 11 o YEI

—

o
AT by [ Xg
1 X

Figure 9. Comparison of Shannon index among four regions
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BN - RS RS O T B AIISE SR MR(3] [12] [14]o SIMPER Z55LE0R, W E SR SANA SR 12
et 5 EL A X 3P v 22 7 PP ok i v, IR IR SR TR i 8 L e 2 R ARk g AL B i, DR 3h 1 Il
PRV R SR L s AR e A2 [12] [15]
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