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Abstract

Parenting Behaviors refer to a series of activities through which parents or alloparents provide sup-
port to dependent offspring. The initiation of such behavior is critically important. Upon perceiving
vulnerable infant cues (e.g., crying, facial features, or odor), the caregiver’s brain rapidly recruits
the oxytocin-centered “parental-care network”, which potentiates affiliative motivation and lowers
the behavioral response threshold—constituting the neuroendocrine initiation of parenting behavior.
Studies show that overactivation of the HPA axis suppresses oxytocin activity, impairing responses to
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offspring cues and hindering parenting initiation. In contrast, oxytocin facilitates this process by
enhancing sensitivity to social signals via the brain’s reward system. Understanding oxytocin’s role
in parenting initiation helps reveal the biological basis of social behavior and offers new insights
for treating related psychological disorders.
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1. 3l

Tk & 17~ (Parenting Behaviors) il & — R 41| & 75 LR 351 OR 5 4 A ££ 1947 8 (Bernard & Dozier,
2008), HAEGAMAAE TR BT B E SR IIRER, BARER R E & MR ReEgaes, X —
ARG RAAME N R B RS SRR, IFEsh R MR, 285 ¥ (Canterberry & Gillath,
2012; Gillath et al., 2016; Gillath et al., 2005), XL BT NKIES), SEEERERBMEEE, EKK
F MO HE AR (Rogers & Bales, 2019). L EATNEBIZM, FIREa SERICE 7 B3 E. %)
BRI SHRZEAT N, FHNmE ) 5EERELKE, SREH 7 AERAELS S 0@ E, H
2[R S5 RAFIE K (Preif et al., 2025; Sadik etal., 2022; w44, 2024; 4, 2018). HEitt&tkd
SRR R MR E P : — )7, ZZEOESI S, 212 KRR e B (4, 2025), R
BEGE N UK ETHE O AR Y): 5 —J7H, B SCEHER LA S 2 AN H N 584 el H E IR
PUTS, HBEE 1T NG 3k (Seyed et al., 2021), X PP 7AW 22 AT A2 HPA Jil )3 5 38 B
P 7 A O R R —— T R RE N ThRETEE. L, R R REELEIT NE SN shE
VML, AR T XA AT N T M ES AR, O SR B e B O RS N RS SR AL T
TR 1) 2 A = 2 8 R

S S ST R A R A 28 B RS A5 FEOE N feiw - A - B EIRAh(HPA Axis), X MHisuE
BT AR B A 2P DG 2R, BN HAT 2 25 1 i P RO 1 5 17 858 5 P (Juruena et al., 2020; McEwen
& AKkil, 2020; O’Donnell et al., 2013), I& 5 S#RT 25 A B J5T J803R 110 PR o 2k [R] 4H 2050 %7 8 Fof 184 B e 7= 25
ZIuNtEtE, TR RO - TR E SN MR HIE MR SR, A HIE s 1) HPA il B e T i
T W B R AR R R LR A% R I P2 R AR (OXTR)RIE, MM ANMART 6 B 28 2% 038 N 1 i o7 B
11, SR E AT NE R (Jianhua et al., 2017; Liu et al., 2025; Nazarloo et al., 2025). f#7* % (Oxytocin,
OXTVEN N MRS AR K, A S ) 1428 HPA il S Ri(Liu et al., 2025), Ffdid H il 2 2 Bk &
GLIG SR XS AL R R A SRS FT, AR X 4 A U B Bl AL (Carcea et al., 2021; Marlin et al., 2015;
Valtcheva et al., 2023). /&8 OXT Tl CF 25 1A 24 B 5 AL & SIHUIK T A& 4128 [H g (Lyu et al.,
2025), {H OXT HE/EH 2B 7 TR E AT NI BRI 2 1A T Hh — B BT 2 AR 2R 1 7]

B 47 N — M EFE J5 sh(Initiation) « 4ERF(Maintenance) F1 5B (Decline) = By, LMEWT 7t 2 B
I KL T s 2 5 M 4k RF (Cafiero & Justich Zabala, 2024; Li, 2020, i EEhETT A2 “TH)
R PR A, EZEWM IR BT AR BIEEOIRE . ARSI FE R L A RN
#2256 55 R K RS 40 7% (Blumenthal & Young, 2023; 4%, 2024). 48 L, A XCBERSRETLS

Tk
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1T RR AT A R 2R, SSiE OXT 72 “ BN - shbL - R =Fr Ber R AE A, IR R 25 322
MR RS 5 L 22 00 = MR R I T PR MR IR BE 47 0 ShIsehS (K mT etk I e B ARRAE 12 WU T
W5 S IR AT 7T -

2. NBAETRN: X REXRTITHRBI=ZHEREIBENS

EE AT v E S FE e AMNEA S 5 & R A RS 2R A 1 AR, wTiREN BN, Bibl. kT =
ANHrEE: 1) J&AI(Detection)——Xf 4 USSR | THIFLAEMESS 2 AT U Bl 2) Bl (Motivation)——
18 26 LG 5 A0 S TP MR, T A N Rl R S R ) s 3) WS (Decision)——7ERUAS - Wi as v B R
TG TR, BUE B ONIRH HAR, IR RN EAR I EE . mE AT e be A 1 IR 4h L
PR AL SUERAE, AR, VL. IR SE, ERSCHain T, &, Sihl5 ek
HAET= M LA A, T mENA FHAT R TR E RN RIS E .

TEEAT AR 352 IR PEAN AR DR 25 B 256 500, i 77 3% (Oxytocin, OXT)EH iR R # C8E H, OXT
T A, MmN AR, WX S SNSRI BRI AR A A R KN
R SR 24T R, (RS EE 5 & 3 57 (Matsushita & Nishiki, 2025; Menon & Neumann, 2023; Wang et al.,
2022), TEREATANE s S5 4R FEH, OXT &5 H E (Keverne & Kendrick, 1992; Rilling & Young, 2014;
Ross & Young, 2009; Valtcheva et al., 2023). /NRSZIGFKH, OXT L= & S A (OXTR) X H it 2k 5 7L
Rt ; { OXTR GRFERI 5] R BEHEAT AR, RIS AR B FIFRER )R> (Yuan etal., 2025), H& HIL
CSEABRMERANIRMT , AHE. ARRER. AEE, 872 N RLI-IETIE > 90% (Mota-Rojas etal.,
2025). (HAG TR R A SRR N A 0] DO A 4E R P8 B shL(Tsuneoka etal., 2022). £5 b, {71t
BT NEBN RS SIFL PRFX = AN B T B R P B AR

2.1. MEITARIIFRAYE

HRAG WML, P a2 LR R L A miL. AR R Em R E BN A
N R B AR I 28 IS, HRAE VA bt 22 LI 4 (JL 302 S8 75) R I B s A 5 A B AR R A ), 7E
[0 2L, R “BEMERZRL 7 (It A BN EL S AMUFTAT R 2RI
BB R (Bjertrup et al., 2021; Pearson et al., 2010), %4 AR IAMEF= 2, (EmIN 22 )L I A
T2 A T (1) Ty R DA SRR P (B A5 DX 28 ) AN BIE 40 12 )22 (15 265 1 15 DX 289 ) P T g R e 1 iR (K IR A%, 2019) 6

ST A A AU I, % I mT 0 B R AL ET X (Medial Preoptic Area, MPOA), 15 B 1% fix
XS 4y B It iy N L e AU (Zelmanoff et al., 2025) . Zh SRS “ g o ] LAPLIE S shizin - f
BIAT A, ZEFRKENT 3 % 2 (Auditory Cortex, AC), I HiEid 3R A5 1= #% (Basal Amygdala, BA) 2T J7
JERIA ST A (BA-AC), SEIL 1A S ) 2 B E A, SLEMEEE BA-AC il 1 1755 AC #hZ2 oxt
AU 7 72 A 2 A SN, AT IS 5 40 RS SRR RE /) o thAh, 4R St m] DU I B i J= 0 9 A% 31 ==
F % (PIL-PVN) i = A 2 oIl Bk A BEVESIL, B ORHT [AT A 5 3 5 4ERf(Nowlan et al., 2025; Valt-
chevaetal., 2023). R4 G BEROWERE AT R4 R, (552 MIE - | (Superior Colliculus, sSC)
WIZPHZ UL, BEJS sSC M) PVN K H LRl IR e X4 dr M, BELHEBUE PYN = =400, M
Mt “EIMBANTY” X —INEREE NN INE S, NIE SN 5 = r] 8B 5 % AT A E
B tE % (Carcea et al., 2021).

2.2. MEITARIRHHEL

BILELRANH “Em” , SR TRENE. a0, BER B LR A R R s - %
PRGN, A SN 5 L AT T 5 S B BURIE K, 3R BEFLMRSR T Bl 22 N 2 WAL (2 ik
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BEPE K A B (Kim et al., 2011) . fRFEA% (Nucleus Accumbens, NAC)ZE I G “ B M7 Fiaske
HEVE: BERL NAC Y D2 32l B I £ B 6T 4 FE 4B, 1T S B I ol 26 X, - ARFAZ - iy
it (VTA-NAC-mPFC) 2 5id i, IG5 EL & b, RIMEER IR SIS E, RFIZE%EE 3
[l 2 LR (Teng et al., 2025), NAC FF {7 3 32 A (OXTR) % J& 5 4 55 7 B S SB E B AT N S IR AR,
7E NAc HH{E 4 OXTR #EHiifl < BAWHX FiHE & 17 N5 3l(Kenkel et al., 2017). fEEJEHE A, NAc H11)
OXT (X RE & AMA I BN AR AT R, X8 T BT B — 20, NAC il #4425
R, S NSHLE] E BT E 17 NI 4k (Dumais & Veenema, 2016).

LERGAELE AT AR T RREEH AR 2 D 2RI R SR BERIE H 2 LRK
fF, NAc S5HER Y 2 (Orbitofrontal Cortex, OFC) &k Z i, 1M1 HIX Py ot B 5 BEor B PEIIEE & shAL LA &%
TR R B IEAH S (Strathearn & Kim, 2013), Jy “%8JLERAE s M BRI, IXE BHERN” B
YA T E B . B PERAURIL, BH O 5 RO RS (PTSD) M BERAE WA 22 ) LR IGRT, NAC S
WE R, T H L TR FE B S B 8T O 5 35 A5 G (Pointet Perizzolo et al., 2022), X M3 2% 1 FE
SIAEUE T NAC 1B D REXT T 4ERFFURIE B s LI L ZE .

b4, OFC it ih5R VTA 12 EIZ(DA) RS FIEMSCIRIE R ZE B2 (DA), AMEMEARAEE /N
B E AT NRESINLIERL, BT RES 5T0E1T7 A B)(Tasakaetal., 2025). OXT R4tiHid H 3z 1k
(OXTR){E MPOA X155, KAMBHE R RN NN “HFERB” MIKSPRE, RAESEET A
“EIWUREL” , e AMAREIEN “EE 47 Bixi(Dumais & Veenema, 2016); ] P AL AT X (MPOA) Al
M4 55 X (VT A)ESHE = R 5 BRI (OTA) rT #llil £ & 17 A 1975 5 (Okabe et al., 2017) . B #07 [7] B /2 (ACC)
S K (CL) RN Ve R SR B , 72 AR AR B BERL b &) I SR ik —Fh “AT A SR s MBI HLAE S 7,
W SN ORI A A W AERRBER ) 77, TR AE S S5tk B AT NI PE JE 3 (Glat et al., 2022). DA XL
WHARSLRIRR 738 R S KA EL & L v FAE A

2.3. MEITHBIREH B

WAHTET B2 (MPFC)HIIA 4 T i JZ X (IL)7E 7 fa R Bl B &R E 5aE R, £ 5%
GrPERIs B R B BRI SO, AT R th 3R 1145 71 FH (Pereira & Morrell, 2011) . A& (MPOA)
ESL B AT N R B PSR BUh i 28 A WAME 5 RIEAT AT e R G E R, & MPOABRS3 #14:
JCH LASEEE TR 510 8 K R i 47 AL SE e e (Alcantara et al., 2025). feilt G240 27 B BT “ B
i R EL R4 B (PRUT)” Ju 4878 T mPFC 25752 (L6)h#ik D1 £ & 2R+ £ 70 J H ) MPOA 4%
SHEN T REVER I B B DRSS AR, HAE “HIRRI” A “HRESE” MR R EA
SO AT ORI o BUPME 5 30 SR B P Ak B ml e, AT R REVEZINL, B AEE AT,
AR T BB AT UR IR 7 5 REEAT N G 2 W 7E = (W et al., 2025).

ERIER 2 W FU AR A P R AE TR B AT N R BN SR B B % O M 6, R A S (Cel) 4 T
POk BRI = R Ao AN, I 0] CeM (WU AATAZ IR R OGP RN, A
T bR BRLE AU 155 53 T 1% B HR 140 | (Yoshihara et al., 2021). i 2 ZX7E P 5B BE AT LK 4D U B M N6 4k
NIEBE NS T, WS “BEhiis]” B “ESELY” MBS, HECAomE 85 SMUF b (LHA) RS
SRASE PRI, BOE AN IIRLET X (MPOA)YL B AH IS H42 Jo -1 R ZEAH R () # £42 7t (Inada et al., 2022).
NEHF T R B o050 B & IR B LR R I A R NS, (HFEETL B SRR, H mPFC X}
LR S v I SNOZ T I 5, R “ ISR PR R 7, RUBRAERAE . BRI E
i A A (Glasper etal., 2019). £5 I, /=& KRG “JRE - ZHL - K7 =AW BOESMBEEE 5 8
BINONIEEAT R, HIESKE 52 ARREHEE T MR R T LURZEE R “BIIT7 o =0
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RAE R ROT G . BRI S RIUE PR 52 S0 RSB 2 — M TR IE RO
3. EFRTH: NIREBENRERS “Bhi” Kg

N T IS MTHOR R K R GET B AT R SR TR, ASCR T IORIE R e =, 2GR
FTHL B - QR T IL MARIEETH. BTNE ZORE “AMBRmAT, EERHBEAR; JEE R
BT ARG BMIE. W REEAILT PP B 2 AEE, (T 5 S WML Z Al LA AT 2
PES IR REALIE 71

3.1. OXT T BT AT AR FETM

N FE R RIS A = R T S AR SBR[ “FRE M7 A4 (W Bifg . 128 s SEiE M
VBG5S ThReE:, A LR A B R S 2 LS 5B S HL, MR, BB RE P 4 5
THECRAS (TR JARAE, 2019). W&V IEEN IR T A I 9 OXT 45 24 R il i BB 7y B (MS) 51 S S dE 22 ik
FAT NP (Joushi et al., 2022), SR BE K T A ERIZF G R BT BRERARAT (At E 8 . FR
R/ 5 5 S L D B, A T BR A R &) B R R], 38500 T R B (Li et al., 2021a; Lietal., 2021b;
Liuetal., 2019), S = 238 o] DUR I OSSR RAMRAZ T O AT (0] 4528 B4 i X AN SEAB G X, {881
U REbR I B2 F . R, TG s 586 E shbL(Li et al., 2017).

5G9 5 OXT W] LA 2535 G A A A MEVE R SR B A [ . AR DL S K B4 25478, T HAEZ X
S OXT AJ LA 55 L 0 DX 4k o o8 8 RO X, AR R0 B2 J2 . A% L A K22 IR 55
FB OXT n] Gl i ix e X (e it $E B 17 NI J5 3l (Ferris, 2008; Pedersen & Prange, 1979). J& & S 5=
FOR AT DA 25 45 40 R A R SR 4 AT (0] B AR (Marlin et al., 2015). DL F0 0 B ANIR PR A R RN
AR T mE #H09) E OE EAEE 2.

3.2. OXT R HIT AT A REE T

JUEANEVESREN OXT feis RIS B 47 0, (X Rl £ 07 & 70 75 V5 BT o ) —— B = R 4 e H
SN ZARRIE ST S RSN 58 E 52, AMNBIREAR AR TR
RANTBEA ML - 5T, EEARRCIREITNREEES) . HRE S AR “PITE” .
RIS T B OXT M Juib e, $e s Bt 4 B Ml R, & 1T R, ScEREsE S
HITE B 17 M B 3RS (Chui et al., 2025; Marlin et al., 2015; #X%E, 2024). Ye#fE S PVN ) OXT #£:7¢
AT NUR TR SR R, Pl RO E SRR B BRI R R B AT, KSR 5 AMEY S OXT AH
Y (Marlinetal., 2015), it AL s AR AR G B _E e IR 2 31 % 55 1% 0 B (sSC—PVN) 1] LR 2 42 5 4))
HEATEIORERR, A A 2210 2 HOR (DREADD)IHI AR A & BERL PYN A1 i~ M &2 70, 1B [ #1[El%)
R[] (Carcea et al., 2021) . Olazabal 1B\ 5 78 K BLHE B 17 N S54R BB 1% (NAC) FH #2528 (OXTR)
FILRIEMRRR, B RZHERANEN NAC JG, 7584 BTN B 2 5 R B 17 MRk
(Olazébal & Young, 2006a; Olazabal & Young, 2006b). i A i 70 3 Fl A 27 38 A% 24 T BUMOE N il = 5%
Z(PVN)H 1) OXT M4 Jn, KA LA SR A & BER 4 4T 1474 (Tasaka et al., 2025).

3.3. OXT I EITAPHRER - £HMTFR

FUE IR AR M2 AL i = R IR BRI “ B B R 7 IK3 2 LA B AT A a8 S RME, (HTEAE S
B, AZIR BRI S T AR < B R R IR E R . TERRERINA) B EE IR, 9 RN KR
i 5 R(E 3 Rt & P 1 KRB AR RHEAT bsitE (42 3 H b EI4) ) (Mayer & Rosenblatt,
1979). MAHANBXI L E AT ARESNEE CEIER, KAEE B RMWEEER G LT OXT & clu®, FHb
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LR R WA E AT A AR TR, ARAEE BERUE W o 5 205 &) B IY 75 e S ZE AT A HH L i
M (Carcea et al., 2021), FLAEHFE AR I R)) bR ) L PSR S PT DAE L S0 BE BV o0 B2 J2 AV 7 3R R GER itk
TH T N(Marlin et al., 2015). XLt BRI flbe . H0 LT e 8 R A2 B 17 8 )8 sh I OCH

T AMAAER IR Y, P55 F &1k (Environmental Enrichment, EE)i&@ it $2 it 2 B2 B i3, &
gtk . L. W OE SRR BB R (R E SR, AN YRR AN AR 4 B R R )RR N A S5 AT
NJABERE . WA B TEAEL, EE ST HJE H R AT B R (PFC). By j2J=(1Ca). (RFEEZ(NAC). IR
% (CP) FEIRAMUA AT A% (BLA) S e A5 1% (CeA) I = 22 32 R (OXTR) % &, Hsifi = R {5 51k 5 528
#2247 NEUR M (Prounis et al., 2018). 152> B (Maternal Separation, MS)ZUK B35 #2547 3245 J% HPA il
ThAEZTL, EE Wi LIR30 JE 1 984k & 47 9 (Francis et al., 2002; Joushi et al., 2022; w44, 2024).
XL R 25T Tl SR U HOE BN = S BURBCE SR A R IR F B, nIEAL X JZ T DA E K
FETLE M.
4. BEERE

AL RGHE T IREAT ARSI = B (A - Sl - 3R B 5 AR L], 3R T F ok
BT NESREENE SRR, RN I G SRt LA R RN, WS R EOE R, HEShBIHLE
LB AT NEAL, RN IR RIEE EEEH . ASCBS AN, WAL 51T
R, NEARIEEAT NN CRBIRE” R4 T

OXT fEZM T RN ST E 17 N R S B EER I AT R AR AN, RSB F 75 A B A I 20
RIFEAILFKER, S R O i s 3 5 B AT 08, 0 “Hal - fig el - BRER Y SEA
ITRZRINENE R R ZEF IR A THE “BRAETHNHL” . vTBSIT G SR EL, g
HE S SOCIREHER, FESN B i@t OXT 5 5 U FE #l I P44k (Lu et al., 2023; Qian et al., 2023; Qu
et al., 2024).

HIR, OXT ZRGFFAENGLAER, /25 HPA il Z %, IR WIRTERT 7 IREE #0273l R 4t
TIZ B AELR MRS BN . HLH] E, OXT A ] HPA Sl P& B i BE/K 1, HRE A & 52
PEFCIRAS 1) 8] U 27 AT —— R SRR OXT Rk =0 o, T B ity 2385 U 4 1) H4 A B (Cox et all,
2015; Smith & Wang, 2014), IXFPX AT AR S AR T EAFBIMER T, MR E R G B &
Bt SR AN, IR OXT 5 R0 AR G msh A0 o im A fa] 5 ) B g 4] o AR ORAIT 9T 75 K & AT
PWNAREFFHA, RN A R SIEOREE T OXT. Wi MR S 2 DA S JLAR R, JEH R G H
FEAEER A BIRES A E S5 i 22 Fe AT, DAAB /R B 1 73+ A fili(Rappeneau &
Castillo Diaz, 2024; Thurston et al., 2025).

W5, N TR ANSERR S E 1077 B, RRNAZZ KT ik B S X E (I 2 1 OB IE 7 3R R 4t
RAEALAA, BRG] E & S AR HE I A Ehric Y SCRE, IRl R 253 % F BOREE T OXT K. B
I 5 5 1 3 186 s s 8 I 5 N 3 42 6 7 (Crdenas et al., 2020; Grahn et al., 2021; Qian et al., 2025), %
ZyHEE - AR RS T I P RIS,  DABE A ROl % B A R 2 AT U AL 2 D s i, IR B R 3)
PerGhe gt AT FUReS . 25 b, T{MMEIREHLE] . WG PN W EAE RN - SMIEIE 55 2 4E IR
B OXT RGKRMHFIT, HEBNIGIRFEAL .

SE

A, T, TR, B, 2R, AT, VIR, B BU0E024). WILAIRE T NI, A
44(8), 3107-3120.
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