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Abstract

Metamaterial absorbers, as a popular research topic in recent years, have been widely applied in fields
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such as detection and photovoltaics. However, they also have the defect of fixed absorption frequency,
so there is an urgent need for frequency tunability. A multi-/broadband tunable dual-function te-
rahertz metamaterial absorber is proposed in this paper. Based on the phase-change material vana-
dium dioxide (VOz2), the absorber achieves multi-/broadband tunable absorption by adjusting temper-
ature to vary conductivity, enabling VO: to transition between insulating and metallic states. Simula-
tion results demonstrate that within the frequency range of 2~8 THz, the device exhibits quad-band
absorption with each absorption rate exceeding 97% when VO: is in the insulating state, while achiev-
ing a broadband absorption with over 60% absorption efficiency when VO: is in the metallic state. Ad-
ditionally, this paper discusses the influence of structural parameters on the absorption performance
of the metamaterial absorber and analyzes its polarization-insensitive characteristics as well as wide-
angle incidence absorption properties. This research is of great significance for designing novel tuna-
ble metamaterial absorbers and their applications in sensing.
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Figure 1. Schematic diagram of absorber unit structure. (a) Three-dimensional structure; (b) Top view; (c) Side view
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Figure 2. Absorption spectra of terahertz metamaterial absorber at different temperatures
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Figure 3. Absorption curves corresponding to the lossy and non lossy dielectric materials
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Figure 4. The distribution of the electromagnetic field at the resonant frequency. The first row is the electric field distribution

of the top layer metal; The second row shows the electric field distribution within the lower layer of the dielectric; The third

row is the magnetic field distribution on the y = 0 plane; The fourth row corresponds to the magnetic field distribution within
the lower dielectric layer
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Figure 5. The influence of different electrical conductivities on absorption performance
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Figure 6. The influence of structural parameters on absorption performance. (a) The length of a cross shaped metal; (b) The
width of a cross shaped metal; (¢) The thickness of VO2 layer; (d) The thickness of upper and lower dielectric layers
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Figure 7. The influence of different polarization angles on absorption performance
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Figure 8. The influence of different incident angles on absorption performance. (a) TM wave; (b) TE wave
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Figure 9. Absorption characteristic curves of analytes with different refractive indices
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