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Abstract

To address the limitations of traditional Newton’s rings experiments—such as the use of a single
type of lens, which fails to meet students’ needs for quickly observing interference patterns of dif-
ferent lenses—this study proposes an interference pattern simulation system integrating multiple
lens types. Based on the theory of equal-thickness interference, an interactive simulation platform
was constructed using MATLAB GUI. By adjusting various parameters including incident light
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wavelength and lens structure (e.g., radius of curvature, cone angle, aspheric coefficient), interac-
tive simulated interference patterns of different lens types were accurately generated. This sys-
tem provides convenience for researchers in learning, teaching, and research activities.
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Figure 1. Schematic diagram of the Newton’s rings apparatus
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Figure 2. Schematic diagram of the quasi-Newton’s rings apparatus composed of an axicon and a flat glass plate
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Figure 3. Schematic diagram of the quasi-Newton’s rings apparatus composed of a plano-convex lens and an aspherical mirror
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Figure 4. GUI design flow chart
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theta = get(slider_theta, 'Value') * pi/180; %ol 4k fi
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Figure 5. Simulation of Newton’ s rings in plano-convex lens-flat glass structure (wavelength variation)
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Figure 6. Simulation of Newton’s rings in plano-convex lens-flat glass structure (curvature radius variation)
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Figure 7. Simulation of Quasi-Newton’s rings in axicon-flat glass structure (wavelength variation)
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Figure 8. Simulation of Quasi-Newton’s rings in axicon-flat glass structure (axicon angle variation)
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Figure 9. Simulation of Quasi-Newton’s rings in plano-convex lens-aspherical mirror structure (aspheric coefficient variation)
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