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摘  要 

基于2025年青年物理学家锦标课题的尺子加农炮问题，本文构建了一个融合动态能量传递与稳定性约束

的悬臂梁理论模型，通过理论建模、参数化仿真与多目标优化分析，系统探究了影响投射物初速度的关

键参数。研究建立了考虑摩擦损耗与梁自身动能的动态能量平衡方程，揭示了施力点位置通过模态激发

机制影响能量转化效率的规律。进一步，结合梁–柱理论分析了压弯组合变形下的屈曲稳定性，提出了

基于精确挠度解的势能修正方法。最终，通过构建综合优化系数曲面，实现了稳定性与动态效率的协同

优化，量化了结构稳定性与发射效率之间的权衡关系，确定了最优设计参数域为该类弹性动力系统的参

数设计提供了理论依据。 
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Abstract 
Based on the ruler cannon problem from the 2025 Young Physicists’ Tournament, this paper con-
structs a cantilever beam theoretical model integrating dynamic energy transfer and stability con-
straints. Through theoretical modeling, parametric simulation, and multi-objective optimization 
analysis, the key parameters affecting the initial velocity of the projectile are systematically inves-
tigated. A dynamic energy balance equation considering friction loss and the beam’s own kinetic 
energy is established, revealing the law that the position of the force application point influences 
energy conversion efficiency through the modal excitation mechanism. Furthermore, combined 
with beam-column theory, the buckling stability under combined compression-bending defor-
mation is analyzed, and a potential energy correction method based on the exact deflection solution 
is proposed. Finally, by constructing a comprehensive optimization coefficient surface, the coordi-
nated optimization of stability and dynamic efficiency is achieved, the trade-off relationship be-
tween structural stability and launch efficiency is quantified, and the optimal design parameter do-
main is determined, providing a theoretical basis for the parameter design of such elastic dynamic 
systems. 
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1. 引言 

弹性动力系统在工程实践中具有广泛应用，其能量传递效率与结构稳定性是决定性能的关键因素。

2025 年 IYPT 的“尺子加农炮”赛题是一种典型的弹性发射装置，其性能核心在于悬臂梁结构的动态响

应与能量转化过程。现有研究虽对梁的弯曲变形与振动特性有所探讨，但在综合考虑动态能量转换、结

构稳定性约束及系统损耗的耦合建模方面尚不完善。特别是施力点位置、梁长与系统屈曲临界状态之间

的量化关系，制约了该类系统的优化设计。 
本文旨在构建一个融合动态能量传递与稳定性约束的悬臂梁理论模型，系统探究影响投射物初速

度的关键参数及其作用机制。研究重点包括：建立考虑摩擦损耗与梁[1]自身动能的动态能量平衡方

程；揭示施力点位置通过模态激发影响能量转化效率的机制；基于梁–柱理论分析压弯组合变形下的

稳定性，并对势能表达式进行精确修正；通过构建多目标优化曲面，实现稳定性与发射效率的协同优

化。 
本研究采用理论建模与数值仿真相结合的方法。基于欧拉–伯努利梁理论建立静态与动态模型，引

入模态叠加法与特征值屈曲分析，量化能量转化路径与失稳临界条件。通过参数化仿真系统评估设计变

量的影响，最终提出一个兼具理论严谨性与工程参考价值的参数优化框架。 

2. 双尺模型的初步建立 

以下是本文在计算和仿真中所使用的参数对照表如表 1。 

Open Access

https://doi.org/10.12677/app.2026.161005
http://creativecommons.org/licenses/by/4.0/


赵天琦 等 
 

 

DOI: 10.12677/app.2026.161005 47 应用物理 
 

Table 1. Parameter comparison table 
表 1. 参数对照表 

参数名称 符号 

悬臂梁长度 L 

悬臂梁宽度 b 

悬臂梁厚度 h 

截面惯性矩 I 

横截面积 A 

施力点位置 xF 

归一化施力点位置 xF/L 

杨氏模量 E 

挠度 ω (x) 

弯矩 M (x) 

固有频率 ωi 

材料密度 ρ 

动摩擦因数 μ 

欧拉临界载荷 Pcr 

小球半径 R 

小球质量 m 

 
由于尺子在受力过程中会产生明显形变，因此将模型分为两部分：小球部分与尺子部分。影响小球

飞出的因素包括尺子的材料[2]，尺子的长短，以及作用在尺子上的力的大小、位置等。此处将小球视作

刚体[3]，将尺子视作悬臂梁[4]并对其进行理论分析。 
当尺子视为悬臂梁时，尺子作为悬臂梁会发生横力弯曲。此时建立尺子的挠度函数模型。对于纯弯

曲的梁，在微小变形和材料服从胡克定律的条件下，梁的挠曲线微分方程[5]如下： 

 ( )
2

2
d
d

EI M x
x
ω
=   (1) 

其中 E 为材料的弹性模量，I 为梁截面的惯性矩， ( )xω 为梁的挠度，x 为某横截面在轴线方向的坐标。以

悬臂梁在自由端受集中力 F 作用为例(固定端为坐标原点 x = 0，自由端为 x = L)挠曲线近似微分方程得： 

 ( )
2

2
d
d

EI F L x
x
ω
= − −   (2) 

根据边界条件确定积分常数，最终得到挠度方程[6]为 

 ( ) ( )2 33
6
Fx Lx x
EI

ω = −   (3) 

其挠度和梁下方压力随施力点距离的变化图如图 1，图 2。 
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Figure 1. Operation result image of the deflection measurement program 
图 1. 测量挠度程序运行结果图像 

 

 
Figure 2. Pressure distribution under the beam 
图 2. 梁下方压力分布 

 
在双尺系统的耦合模型下，根据弹性势能向动能的转化计算投射的速度。以下将从梁弯曲形变能理

论[7]，以能量守恒定律和非线性动力学的角度进行物体初速度的公式推导和修正。 
尺子的形变能来源于尺子的变形。假设尺子是均匀的非线性弹性材料[8]，并进行了系统解析。假设

尺子为均匀梁受到一横向力 F 的作用，考虑小球的约束力 F ′受力如图 3。 
 

 
Figure 3. Force analysis diagram of the elastic rigid body acting on the ball 
图 3. 弹性刚体对球的受力分析图 

 
在此使用挠度 ( )xω 来描述梁的变形[5]。对于悬臂梁，挠度函数 ( )xω 满足以下欧拉伯努利梁[9]方程。 

 ( )4

4

d
0

d
x

EI
x
ω

=  (4) 
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在梁弯曲变形能理论中，其弹性势能 U 表示为 

 
22

20

1 d d
2 d

L
U EI x

x
ω 

=  
 

∫  (5) 

显然，研究中需要考虑 F ′对尺子的作用。此外，施力位置对系统的模态响应和能量转化效率也具有

重要影响。现对单侧的一把尺子为研究对象，视为变形体，对于悬臂梁施力位置影响的弯矩分布分析[10]
如图 4，图 5。其中 a 为施力点到固定端的距离。 

 

 
Figure 4. Force analysis diagram for bending moment calculation using the section method ( 0 x L< < ) 
图 4. 0 x L< < 利用截面法求弯矩受力分析图 

 

 
Figure 5. Shear force diagram and bending moment diagram ( 0 x L≤ ≤ ) 
图 5. 0 x L≤ ≤ 的剪力图、弯矩图 

 
根据上图可以得到关于 ( )1M x ， ( )2M x 的弯矩方程： 

 
( ) ( ) ( )( )
( ) ( )( )

1

2

0M x F L x F a x x a

M x F L x a x L

′= − − − < <

′= − ≤ ≤
  (6) 

由动载荷平衡条件可得 F 与 F ′的关系 

 Fa F L′=   (7) 

将梁的挠曲线微分方程(1)带入梁弯曲理论下，弹性势能表达式(5)中，可得弯矩平方积分决定的弹性

势能分布表达式[11] [12] 

 ( )2

0

1 d
2

L M x
U x

EI
= ∫   (8) 
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所以 

 ( ) ( )2 2
1 2

0

1 1d d
2 2

a L

a

M x M x
U x x

EI EI
= +∫ ∫

 
(9) 

将(6)式带入(9)式中得 

 ( )22 2

6
a F L a

U
EIL

−
=   (10) 

弹性势能 U 完全转化为投射物的动能 T，满足： 

 
U T=

  
(11) 

其中： 

 21
2

T mv=   (12) 

m 为小球质量，然后我们得到理论出射速度 v1 

 ( )
1 3

aF L a
v

EILm
−

=   (13) 

说明：式(13)是在假设小球位于尺子末端的前提下推导的，即小球与尺子末端边界相切，如图 3 所示。

然而，实验中小球难以在末端稳定停留，如图 6 所示，小球切点距末端的距离近似为小球半径 R。因此，

结合实际情况对公式进行修正，得到 1v′。 

 ( )
( )1

3

aF L R a
v

EI L R m
− −

′ =
−

  (14) 

 
Figure 6. Schematic diagram of the actual position 
图 6. 实际位置示意图 

 
在小球施压后、弹射前有一段距离 R，尺子和小球的摩擦做功损耗不可忽略，所以需要引入摩擦力

对能量耗散的影响。当小球与尺子表面接触时，摩擦力 f 会消耗部分能量。而摩擦力的大小由以下公式决

定： 

 f Fµ ′=   (15) 

µ 为动摩擦因数，对时间积分得到由摩擦力产生的能量损失 fE  

 fE fx F Rµ ′= =   (16) 

故小球的动能为尺子储存的弹性势能减去摩擦损耗 

 fT U E= −   (17) 
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 将(15)带入(7)中得到 F 与 f 的关系再代入(2。14)式中得到存在摩擦能量损耗的发射速度公式 

 
( )
( ) ( )

22 2

2
2

3
a F L R a FaRv

mEI L R m L R
µ− −

= −
− −

  (18) 

用能量形式表示为 

 ( )2
2

fv U E
m

= −   (19) 

(18)式是最终理论计算公式。特殊说明：此式是把尺子视为受横力弯曲的变形体，未考虑受力过大带来的

失稳，并假设尺子最大变形所储存的弹性势能减去摩擦损失后全部转化为小球的动能。 

3. 动态分析与理论模型优化 

前述模型均基于准静态假设，即认为尺子储存的弹性势能(减去摩擦损耗后)完全转化为小球的平动

动能。然而，在载荷迅速移除的发射瞬间，尺子会以其固有振动模态回弹，这部分振动能量无法传递给

小球，构成了重要的动态能耗。 
将尺子模型优化为动态弹性梁，其自由横向振动的控制方程为 

 ( ) ( )4 2

4 2

, ,
0

x t x t
EI A

x t
ω ω

ρ
∂ ∂

+ =
∂ ∂

  (20) 

悬臂梁前两阶模态振型图如图 7。 

 

 
Figure 7. First two order modal shapes of the cantilever beam 
图 7. 悬臂梁的前两阶模态振型 

 
其中 ρ 是材料密度 A 是横截面积。运用分离变量法 ( ) ( ) ( ),x t x q tω ϕ= ⋅ 可以解出梁的固有频率 iω 和对应的
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模态振型函数 ( )i xϕ ，对于悬臂梁其特征值方程频率方程和振型函数分别为(21)，(22)，(23)。 

 ( ) ( )cos cosh 1i il lβ β⋅ = −   (21) 

 ( )2
4i i

EIl
Al

ω β
ρ

=   (22) 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )cos cosh

cosh cos sinh sin
sin sinh

i i
i i i i i

i i

l l
x x x x x

l l
β β

ϕ β β β β
β β

+
 = − − − +

  (23) 

其中前 3 阶的特征值为： 

 1 1.875lβ ≈  2 4.694lβ ≈  3 7.855lβ ≈   

这些振型函数满足正交性条件： 

 
( ) ( )

( ) ( )
20

2
0

d

d

L
j e ij

L
j i e i ij

A x x x m

EI x x x m

ρ ϕ ϕ δ

ϕ ϕ ω δ

 =


′′ ′′ =

∫

∫
  (24) 

其中 em 是模态有效质量， ijδ 是 Kronecker delta 函数。在初始时刻 ( )0t = 尺的静态挠度曲线 ( )s xω 可以看

作为所有模态振型的线性叠加，则有： 

 ( ) ( )
1

s i i
i

x a xω ϕ
∞

=

= ∑   (25) 

其中模态坐标 ia 由初始位移的模态投影决定，则有： 

 
( ) ( )
( )

( ) ( )0
2 0

e
0

d 1 d
d

L
Ls i

s iL
i

A x x x
a A x x x

mA x x

ρ ω ϕ
ρ ω ϕ

ρ ϕ
= =

  

∫
∫

∫
  (26) 

由(3)式可知，当横向力 F 作用于点 Fx 时其静态挠度曲线为： 

 ( ) ( )2 33
6s F
Fx x x x
EI

ω = − ( )0 Fx x≤ ≤   (27) 

当小球在 0t = 时刻脱离后，系统开始自由振动，根据模态分析理论，初始时刻储存正第 i 阶模态中的

势能为： 

 2 2
e

1
2i i iU m aω=   (28) 

在自由振动中，这部分能量在该模态的动能与势能之间周期性转换，但无法传递给小球。因此，系

统的残余振动能 vU 为所有模态能量之和： 

 2 2
v e

1

1
2 i i

i
U m aω

∞

=

= ∑   (29) 

根据能量守恒，能够传递给小球的动能为： 

 vfT U E U′ = − −   (30) 

我们定义一个动态能量转化效率 dη 其中： 
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2 2
e

v 1

1
21

i i
i

d

m a
U
U U

ω
η

∞

== − =
∑

  (31) 

动态能量转化效率与归一化施力位置的关系图如图 8，在图片中我们可以更直观地观察到最优实力位置。 
 

 
Figure 8. Variation of the dynamic efficiency factor with the position of the force application point 
图 8. 动态效率因子随施力点位置的变化 

 
此效率因子 dη 取决于施力点位置 Fx ，当施力点位于低阶模态的波腹处时，该模态被强烈激发， dη 较

低，位于节点时则不被激发， dη 较高如图 9。 
 

 
Figure 9. Modal excitation coefficients at different force application point positions 
图 9. 不同施力点位置的模态激发系数 
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即我们得到了速度的优化公式： 

 ( )3
2

d fv U E
m

η= ⋅ −   (32) 

此式不仅揭示了尺子自身振动造成的能量损失机制，也表明通过优化施力点位置最大化 dη 是提高导

流性能的关键途径之一。 

4. 稳定性分析及其临界条件预测 

在 2 节的模型中尺子被化简为反受横向载荷的悬臂梁，然而在实际的结构中当尺子被压弯准备发射

时，其轴线方向承受着显著的轴向压力 P，因此尺子处于压变组合变形状态：当轴向压力 P 达到某个临

界值 crP 时尺子会发生屈曲失稳[13]，如图 10、图 11 为尺子受力时的变形及内力分布图。屈曲失稳会导致

弹性势能的储存和释放方式发生突变，使发射性能急剧下降式失效。 
 

 
Figure 10. Combined compression-bending deformation diagram 
图 10. 压弯组合变形图  

 

 
Figure 11. Internal force distribution diagram 
图 11. 内力分布图 

 
对于同时承受轴向压力 P 和横向载荷的梁，其挠曲曲线微分方程需引入轴向力的影响，距离固定端

x 处的弯矩为 

 ( ) ( ) ( )M x F L x P xδ ω= ⋅ − + ⋅ −   (33) 
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其中 ( )lδ ω= 是自由端总挠度将其代入(1)式中，则有 

 ( )
2

2
d
d

P F PL x
EI EI EIx

ω ω δ+ = − +   (34) 

考虑系统发生屈曲的临界状态，即分析仅有轴向压力 P 作用下的特征值问题[14]，此时控制方程变

为齐次。 

 
2

2
d 0
d

P
EIx

ω ω+ =   (35) 

结合悬臂梁的边界条件，其特征值方程为 
 ( )cos 0kl =   (36) 

其对应欧拉临界载荷为： 

 
( )

2 2

cr 2 242
EI EIP

ll
π π

= =   (37) 

临界屈曲载荷与尺子长度的关系图如图 12。 
 

 
Figure 12. Relationship between critical buckling load and ruler length 
图 12. 临界屈曲载荷与尺子长度的关系 

 
实际加载中，梁承受轴向压力 P 与横向力 F 的共同作用，属于压弯组合问题。控制方程修正为梁–

柱方程： 

 ( ) ( ) ( )
4 2

4 2

d d
d d

c cx x
EI P q x

x x
ω ω

+ =  (38) 

其中 q(x)为横向分布力。求解此方程可获得更精确的挠度曲线 ( )c xω 及对应的弹性势能 U。当 P 接近欧 

拉临界载荷
( )

2 2

cr 2 242
EI EIP

ll
π

=
π

= 时，系统刚度显著退化。综合摩擦损耗 Ef、残余振动能 Uv及梁自身动能 T， 

完整的能量守恒方程修正为： 
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 2
0

1
2 f vU mv E U T= + + +  (39) 

由此可解出更符合物理实际的初速度 v0。动态能量转化效率因子定义为 dη′ 传递给小球的动能与总有

效势能之比： 

 
2
01

2d
v

mv
U U

η′ = ⋅
−

 (40) 

将 dη′ 带入(32)式中即可求出物体出射速度。 

5. 综合优化 

通过构建以悬臂梁结构长度 L 和归一化施力点位置(xF/L)为自变量、以综合优化系数为因变量的三维

曲面 r，如图 13、图 14，直观表征了系统在稳定性与动态能量传递效率双重约束下的性能空间分布。 
 

 
Figure 13. Comprehensive optimization analysis of and dynamic response 
图 13. 稳定性与动态响应综合优化分析 

 

 
Figure 14. Contour diagram of the comprehensive stability optimization coefficient 
图 14. 综合优化系数等高线图 
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Figure 15. Comparison diagram of theoretical curve and experimental scatter 
图 15. 理论曲线与实验散点对比图 

 
该曲面几何特征明确显示了最优设计参数域的存在：在较短的梁长度区间(规避欧拉屈曲临界区)与

施力点位于约 0.5 倍梁长位置(对应于低阶模态节点区域)的耦合条件下，系统可获得最大化综合性能，如

图 15。 
此优化框架的突出优势在于其将原本相互竞争的稳定性目标(要求高刚度、短梁长)与动态效率目标

(追求特定施力点以抑制其他振动)统一于单一量化指标中，从而为“尺子加农炮”这类弹性动力系统的参

数设计提供了兼具理论严谨性与工程适用性的可视化分析工具。 

6. 结论 

本文通过构建了一个融合稳定性约束与动态能量传递效率的悬臂梁理论模型，系统探究“尺子加农

炮”系统中影响投射物初速度的关键参数。研究结果表明，施力点位置对系统性能具有决定性影响，其

最优值位于约 0.5 倍梁长附近，该位置有效控制了低阶模态振动的激发，从而显著提升了弹性势能向动

能的转化效率。稳定性分析进一步揭示了结构屈曲的临界条件，确定了轴向压力与梁长的安全设计边界，

并且我们引入稳定性因子对弹性势能表达式进行了修正。通过摩擦耗散的分析印证了摩擦因数的减小可

有效降低能量损失，提升出射速度。最终，通过建立综合优化系数立体图，实现了对相互竞争的稳定性

目标与动态效率目标的共同优化，为该类弹性动力系统的参数设计提供了兼具理论严谨性与工程适用性

的决策依据。 
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