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Abstract

VO: owing to its reversible metal-insulator transition (MIT) and tunable infrared optical response,
has been proposed as an attractive surface smart thermal control material for aerospace applica-
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tions. However, cosmic rays in the space environment can modify the defect spectra and lattice
structure of VO2 via ionization and displacement processes, thereby degrading VO: functional prop-
erties. This work systematically examines the effects of the dominant cosmic-ray constituent, the
proton in the 20~160 keV energy range on epitaxial VO: films grown on Al203 (0001). SRIM simula-
tions of the incident protons indicate that nuclear stopping power and the resulting vacancy density
are inversely correlated with ion energy. Subsequent physical characterizations corroborate the
simulation results: lower proton energies produce more pronounced irradiation effects in VO2. Van
der Pauw resistivity measurements show that irradiation advances the phase transition on the
heating branch, with the MIT temperature decreasing from 347 K to as low as 341 K. X-ray diffrac-
tion reveals an out-of-plane lattice expansion. The interplanar spacing along the out-of-plane (010)
direction d (010) increases from 4.502 A to a maximum of 4.514 A. Atomic force microscopy indi-
cates an increase in surface roughness, with root-mean-square roughness rising from 1.257 nm to
1.896 nm. Temperature-dependent Raman spectroscopy shows that an increased vacancy concen-
tration weakens the characteristic room-temperature Raman modes and causes their thermal at-
tenuation to occur at lower temperatures. Fourier-transform infrared measurements demonstrate
that irradiation degrades the infrared switching capability of VO2.
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Figure 1. (a) Nuclear stopping power of H* as a function of ion energy; (b, ¢) Depth-distribution profiles of V and O vacancies
induced by H*; (d~f) Schematic trajectories of H" incident on VO at 20, 90, and 160 keV, respectively
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Figure 2. VO2 under proton irradiation at different energies: (a) Resistance-temperature curves; (b) Temperature
derivative of the logarithm of the resistance
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Table 1. Phase-transition temperatures of VOz under proton irradiation at different energies
1 TERERFRERET VO iR TIRE

IR Theating (K) Teooling (K) Twmir (K)
Virgin 350 344 347
20 keV H* 345 337 341
90 keV H* 349 341 345
160 keV H* 351 344 3475
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Figure 3. (a) 26-w scans of VO2 after proton irradiation at different energies; (b) Out-of-plane lattice constant of

VO as a function of proton energy
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Figure 4. AFM characterization of VVO2 following proton irradiation at different energies
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Figure 5. Room-temperature Raman spectra of VO after proton irradiation at different energies
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Figure 6. Temperature-dependent Raman spectra of VO following proton irradiation at different energies
[E 6. TRIGEERTFHER VO WERNENIE

virgin
H* 20keV
=G [ JH* 90keV
s [ 1H* 160keV
o oo AN Solid lines: Heating
’; O 3 Dashed lines: Cooling
«
—
= oo
w " > <
c >
[]
-
£

300 320 340 360
Temperature(K)
Figure 7. Temperature dependence of the integrated area of the Raman peak at 614 cm™ for VO2 under proton irradiation at

different energies
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Figure 8. Infrared transmittance spectra of VO after proton irradiation at different energies
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