Preliminary Study on *Agrobacterium*-Mediated Transformation of *DR*1372 Gene into *Brassica napus* L.*

Siwei Zhang¹, Wenbo Zhou¹, Xin Zhang¹, Cuina Chen¹, Oilin Dai¹, Jin Wang^{2#}

¹School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang ²Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing Email: weiweizhibei@163.com, *wjdsz@vip.sina.com

Received: Jan. 2nd, 2013; revised: Jan. 10th, 2013; accepted: Jan. 16th, 2013

Abstract: The *DR*1372 containing a special domain called WHy was cloned from *Deinococcus radiodurans*. This WHy domain may be involved in the mechanism of drought resistance. In this study, the plant expression vector *DR*1372-*pBI*121 was constructed and introduced into *Brassica napus* L. mediated by Agrobacteria. Several factors affecting genetic transformation efficiency were explored and the Agrobacterium-mediated genetic transformation system was set up in *Brassica napus*. This study provides essential materials for later research on *DR*1372 gene.

Keywords: DR1372; Brassica napus L.; Genetic Transformation; Drought-Tolerance

农杆菌介导 DR1372 基因转化甘蓝型油菜*

张思维1,周文波1,张 新1,陈翠娜1,代其林1,王 劲2#

¹西南科技大学生命科学与工程学院,绵阳 ²中国农业科学院生物技术研究所,北京 Email: weiweizhibei@163.com, *wjdsz@vip.sina.com

收稿日期: 2013年1月2日; 修回日期: 2013年1月10日; 录用日期: 2013年1月16日

摘 要: DR1372 基因是在耐辐射奇球菌(Deinococcus radiodurans, DR)基因组中克隆得到的一个基因,其蛋白序列存在一个 WHy 功能域,此功能域可能参与油菜的抗旱过程。本研究首先构建植物 DR1372-pBI121 表达载体,然后利用农杆菌介导法将目的基因 DR1372 成功转入甘蓝型油菜中,并对影响油菜再生频率以及遗传转化效率的几个因素进行了探讨,初步建立了油菜转 DR1372 基因遗传转化体系,为 DR1372 基因的功能研究奠定了基础。

关键词: DR1372;油菜;农杆菌介导;遗传转化

1. 引言

耐辐射奇球菌因其对电离辐射、干燥、紫外线及 一些 DNA 损伤试剂显示超强的抗性,一直倍受生物 医学界的关注^[1]。Battista 等推测,在耐辐射球菌中的抗逆性研究将用于引导较高生物体的抗逆性研究^[2]。 DR1372 基因就是在耐辐射奇球菌基因组中克隆得到的一个基因,对 DR1372 蛋白序列进行分析,其内部存在一个 WHy 功能域非特异性结合位点。Francesca 等人研究证实,WHy 功能域与脱水素具有同源性,是参与植物水分胁迫应答以及超敏应答的一类功能域

^{*}基金项目:转基因生物新品种培育重大专项(2009ZX08009-091B), 国家自然科学基金(30871555),教育部新世纪优秀人才支持计划 (NCET-08-0940),四川省教育厅(09ZA034)和西南科技大学博士研究基金(11zx7104),农业部公益性行业科研专项(201103007)。 *通讯作者。

[3]。脱水素是一类亲水性蛋白质,它们在胚胎发生后期阶段产生,对低温、外源 ABA、干旱、盐渍以及脱水胁迫反应迅速,进而在植株中积累^[4,5]。这些间接证据表明,*DR*1372 基因可能会参与植物的抗旱性应答。

本实验室把 DR1372 基因转入大肠杆菌后,经初步定性分析发现,在大肠杆菌中有稳定细胞膜,调节细胞内外渗透压的作用,初步推测为与调节水分胁迫应答有关的基因。本研究首先构建植物 DR1372-pBI121 表达载体,利用农杆菌介导法将 DR1372 基因转入油菜中,并对影响油菜再生频率以及遗传转化效率的几个因素进行了探讨,初步建立了转 DR1372 基因油菜遗传转化体系,为该基因耐盐抗旱研究提供了植物材料,也为 DR1372 包括 WHy 功能域的功能研究奠定了基础。

2. 实验材料

2.1. 菌株

含有携带基因 DR1372 的穿梭质粒(DR1372 + Z3) 的大肠杆菌 $DH5\alpha$ 由中国农业科学院生物技术研究所提供。

根癌农杆菌 EHA105 以及大肠杆菌 JM109 由本实验室保存。

2.2. 植物材料

供试的甘蓝型油菜 84100-18(玻里马细胞质雄性 不育恢复系),由四川大学遗传学实验室提供。

2.3. 培养基

LB 液体培养基: 用胰蛋白胨 10 g、酵母提取物 5 g、NaCl 10 g,溶于 ddH_2O 中,定容至 1 L,pH 7.0,高压灭菌;

农杆菌摇菌培养基: LB + Rif 40 mg/L + Str 20 mg/L + 卡那霉素 50 mg/L;

预培养基: MS + 6-BA 2.0 mg/L + AgNO $_3$ 2.5 mg/L + 2,4-D 1.0 mg/L + AS 100 umol/L;

筛选培养基: MS + 6-BA 2.0 mg/L + 卡那霉素 10 mg/L + AgNO₃ 2.5 mg/L + Cab 500 mg/L;

生根培养基: 1/2 MS + Cef 250 mg/L + NAA 0.15 mg/L。

3. 实验方法

3.1. 构建 DR1372-pBI121 植物表达载体

3.1.1. PCR 扩增目的基因 DR1372

根据 *DR*1372 基因序列,利用生物软件 Primer5设计出该基因的上、下游引物(分别命名为 *DR*1372-F,*DR*1372-R);根据 *pBI*121 质粒图谱,分别引入 XbaI,SacI 限制性酶切位点,并设计引物如下(加粗标记示酶切位点):

*DR*1372-F: 5'---GC**TCTAGA** ATGAAGAAGAT GGCTTTTGCG----3'

*DR*1372-R: 5'--- C**GAGCTC** TCAAAACACCGA TAAAGGCGC----3'

用试剂盒(TIANGEN)提取 DR1372 + Z3 质粒,以此作为模板,在最优扩增体系下进行 DR1372 基因 PCR 扩增。电泳验证。

3.1.2. pBI121 质粒的提取

用试剂盒(TIANGEN)提取 pBI121 质粒。电泳验证。

3.1.3. PCR 产物 DR1372 与质粒 pBI121 胶回收

PCR 产物经电泳检测后,使用琼脂糖凝胶 DNA 回收试剂盒(TIANGEN)回收扩增的目的片段 DR1372 和与质粒 pBI121。电泳验证。

3.1.4. DR1372 基因和 pBI121 的酶切,连接,筛选及 鉴定

目的片段 *DR*1372 和 *pBI*121 质粒用 XbaI, SacI(购自 Takara 公司)进行双酶切,37℃酶切过夜,回收目的片段。将胶回收的目的基因片段和 *pBI*121 质粒大骨架片段,16℃连接过夜,重组质粒转化 JM109 感受态细胞。然后进行菌落 PCR 初步鉴定,将 PCR 检测出的阳性单克隆摇菌后送华大基因公司测序。最后挑取测序成功的 JM109 单菌落,继代培养,保菌。将保存菌种摇菌提取质粒,得到 *DR*1372-*pBI*121 植物表达载体。最后,将 *DR*1372-*pBI*121 植物表达杆菌 EHA105 浸染备用,具体参照余云舟等方法^[6]。

3.2. 转 DR1372 基因油菜遗传转化体系的建立

3.2.1. 油菜无菌苗的培养

将甘蓝型油菜种子用无菌水清洗两次, 浸泡 10

min,用 75% 乙醇消毒 2 min 后,灭菌水清洗两遍,然后用浓度为 0.1%的升汞溶液消毒 15 min,最后用灭菌水洗 5 遍。把消毒的油菜种子均匀地摆放在无植物激素的 MS 固体培养基上。在 25 \mathbb{C} 室温下进行光照培养,生长 $5\sim6$ d。

3.2.2. 外植体的预培养

用剪刀剪取油菜无菌苗紧邻生长点以下约 0.5 cm 长的下胚轴,置于预培养基上,光照预培养 1~4 d。

3.2.3. 根癌农杆菌浸染浓度以及侵染时间的确定

在 50 mL 农杆菌摇菌培养基中加入 0.5 ml 载有 DR1372~pBI121 植物表达载体的 EHA105 菌液,在 28℃下 200 rpm 振荡培养过夜至对数生长期,OD600 约为 1.0 左右。取上述菌液于 4℃下 5000 rmp 离心 15 min 后,弃上清,收集菌体,用 MS 液体培养基重悬,将 OD600 值为 1.0 的菌液稀释为 OD600 = 0.1、0.3、 0.4 和 0.5。用上述不同浓度的菌液侵染已知数量的预培养下胚轴,侵染时间分别为 50 s、90 s、130 s、170 s。侵染期间使外植体充分与菌液接触,然后取出浸染后的外植体,在灭菌滤纸上吸干多余菌液,重新转入预培养基中暗培养 2 d 后观察培养情况。

3.2.4. 转基因抗性植株的获得

把暗培养 2 d 后的下胚轴转入到卡那霉素筛选培养基上进行筛选培养,每两周继代,直至再生出幼芽。当幼芽长到 1~2 cm 高时,去掉愈伤组织,并将幼芽转移到生根培养基中。待其生长到 5~6 cm 高,根长5~6 cm 以及根的数量为 10 条以上时,半敞开培养瓶盖子进行炼苗;待幼苗适应外界环境以后,移栽到室内灭菌的盆土中(腐殖土:蛭石 = 2:1),并用 1/2 MS 培养液浇灌,移栽出一周内给小苗外罩烧杯保湿,最终得到具有卡那霉素抗性的油菜。

3.2.5. 转基因抗性植株的 PCR 检测

取甘蓝型油菜(非转基因型)和转基因再生的卡那霉素抗性植株叶片,用 CTAB 法提植物总 DNA,具体方法参照文献《植物基因工程原理与技术》^[7]。取以上制备的总 DNA 为模板,在 25 微升反应体系中,按标准反应程序对 DR1372 基因进行 PCR 扩增。具体反应条件为: 94°C,5 min; 94°C,1 min; 58°C,30 s; 72°C,30 s; 30 cycles; 72°C,10 min。

4. 结果

4.1. DR1372-pBI121 质粒植物表达载体的构建

4.1.1. DR1372 基因的扩增

提取 *DR*1372 + *Z*3 质粒,电泳结果如图 1(A)所示,目标基因条带清晰,无弥散现象,可以用于 PCR 扩增。利用 *DR*1372-F和 *DR*1372-R 引物对 *DR*1372 基因进行 PCR 扩增,其电泳结果如图 1(B)。 *DR*1372 基因分子大小为 495 bp,条带位置正确,并为单一条带。最后对 PCR 产物进行胶回收。

4.1.2. pBI121 质粒的提取

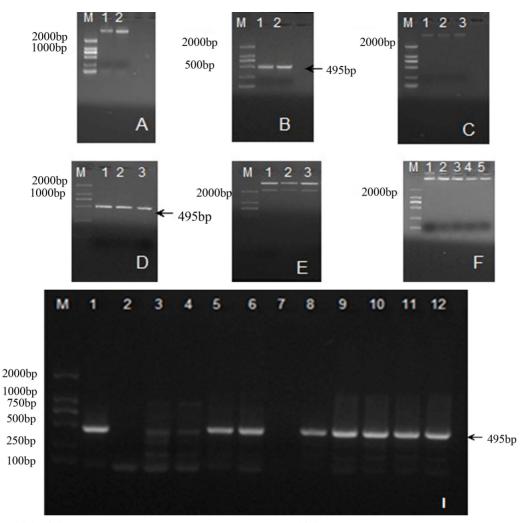
提取 pBI121 质粒后进行电泳,其电泳结果如图 1(C)所示,所提取的目标基因条带清晰,无弥散现象,可以进行酶切。

4.1.3. DR1372 与 pBI12 的双酶切

对 *DR*1372 胶回收产物进双酶切,经电泳胶回收后如图 1(D)所示。同时对 *pBI*121 质粒进行双酶切,其电泳图和胶回收情况见图 1(E)和图 1(F)。

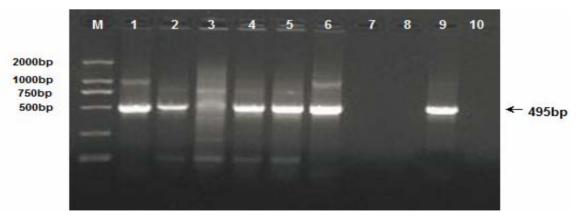
4.1.4. DR1372-pBI121 质粒转化大肠杆菌 JM109

DR1372-pBI121 质粒转化到 JM109 后,经培养后 挑取抗卡拉霉素单菌落直接进行 PCR 扩增,其扩增的 部分结果如图 1(I),结果表明:有多个菌落显示为阳性,阳性克隆送去测序,测序反馈结果经基因软件分析,目的序列与 DR1372 序列完全一致,说明 DR1372 外源基因成功导入到了大肠杆菌 JM109 中。


4.1.5. DR1372-pBI121 质粒转化大肠杆菌 EHA105

将测序正确的 JM109 单菌落扩大培养后提取质粒并转化 EHA105 感受态,得到的单菌落进行菌落 PCR 验证,结果如图 2。由图 2 可知,可以选择 1~2、4~6 号保菌做浸染外植体用,阳性率为 66.67%。

4.2 油菜转 DR1372 基因遗传转化体系的建立


4.2.1. 预培养时间对遗传转化的影响

我们的实验结果表明,对不经过预培养或预培养 1 d 的外植体进行农杆菌浸染,下胚轴分化不明显,感染后出现较严重的褐化和死亡现象,出芽率较低。 当预培养时间为 2 d 左右时,对外植体进行侵染,出 芽率达到最高的 7.86%,与 Charest^[8]等人的研究一致。 若预培养时间超过 4 d,外植体切面创伤逐渐愈合致

A: DR1372 + Z3 质粒电泳条带 A: Agarose gel electrophoresis of DR1372; B: DR1372 扩增条带 B: Agarose gel electrophoresis of DR1372 PCR product; C: pBI121 质粒提取验证 C: Agarose gel electrophoresis of pBI121; D: DR1372 双酶切后胶回收 D: Agarose gel electrophoresis of DR1372 digested by XbaI and SacI; E: pBI121 双酶切电泳图 E: Agarose gel electrophoresis of pBI121 digested by XbaI and SacI; F: pBI121 双酶切胶回收验证 F: Agarose gel electrophoresis of pBI121 backbone; I: JM109 菌落 PCR 验证 I: 1: Positive control; 2: Negative control; 3-10: PCR products of JM109 with pBI121-DR1372 clone。

Figure 1. PCR products of JM109 with pBI121-DR1372 clone 图 1. JM109 菌落 PCR 验证

M: DL2000 Maker; 9: 阳性对照; 10: 阴性对照; 1~8: 单克隆菌落 PCR。

Figure 2. Analysis of colony PCR products 图 2. EHA105 的菌落 PCR 验证

使农杆菌很难侵染,玻璃化率以及白化率急剧增高,从而使出芽率降低。结果表明,对下胚轴进行 2 d 的 预培养可得到最高 7.86%的出芽率(表 1)。

4.2.2. 农杆菌菌液浓度和侵染时间对遗传转化的影响

适宜的农杆菌感染浓度和感染时间是遗传转化成功与否的重要因素^[9]。我们的试验表明,如果菌液浓度过大或偏低,感染时间过长或不足,会导致外植体被侵染过度致死或未被感染。当农杆菌浓度达到0.5以上时,外植体褐化严重,且农杆菌大量生长,无法抑制,外植体在共培养和筛选试验中会慢慢死亡,导致转化率极低;但是当农杆菌浓小于0.2时,经过筛选几乎得不到绿芽。农杆菌菌液浓度在0.3~0.5之间处理外植体90s,得到了较多的抗性芽。由表2可以看出,以OD600=0.4的菌液处理外植体90s,转化

效率最高, 达到 8.93%。

4.2.3. 转 DR1372 油菜抗性植株的获得

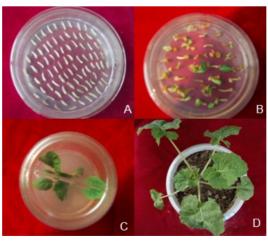
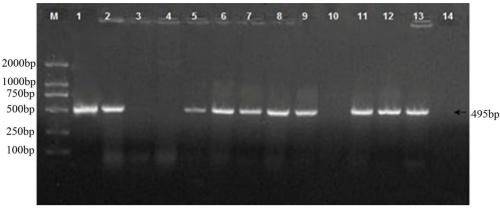

转 *DR*1372 抗性植株获得的过程如图 3 所示,共获得卡那霉素抗性植株 169 株,对其进行 PCR 检测如图 4 所示,有 123 株显示出阳性,阳性率为 72.8%。

Table 1. Effect of pre-incubation time on budding rate of rape callus 表 1. 预培养时间对抗性芽率的影响

预培养时间(d)	愈伤率(%)	玻璃化率(%)	自化率(%)	出芽率(%)
0	0	0	0	0
1	40.7	0	0	4.12
2	63.9	3.4	2.2	7.86
3	94.6	18.6	13.2	6.45
4	99.3	12.3	17.9	3.37


Table 2. Effect of concentration of bacterium fluid and infection time on budding rate of rapeseed hypocotyls 表 2. 农杆菌菌液浓度和侵染时间对抗性芽率的影响

感染时间(s)	菌液浓度(OD600)	侵染下胚轴数	再生绿芽下胚轴数	出芽率(%)
50	0.4	120	3	2.50
	1.0	138	2	1.45
90	0.1	145	0	0
	0.3	134	9	6.72
	0.4	168	15	8.93
	0.5	167	12	7.19
	1.0	182	3	1.65
130	0.1	137	0	0
	0.4	99	2	2.02
170	0.1	116	0	0
	0.5	124	0	0

A: 下胚轴; B: 抗性芽; C: 生根培养; D: 移栽成活苗。

Figure 3. Regenerated seedlings on screening medium with kanamycin 图 3. 油菜在卡拉酶素筛选培养基上再生的抗性苗

M: DL2000 Maker; 1: 阳性对照; 14: 阴性对照; 2~13: 抗性植株。

Figure 4. PCR test of *DR*1372 gene in transgenic plants 图 4. 转 *DR*1372 基因油菜 PCR 检测

5. 讨论

本研究首先构建 *DR*1372-*pBI*121 载体,载体上带有一个 GUS 基因,以及 CaMV35S 强启动子和 NOS 终止子。将植物表达载体 *DR*1372-*pBI*121 载体导入农杆菌 EHA105 中,利用农杆菌介导法转化油菜下胚轴,得到卡那霉素抗性植株 169 株。提取抗性植株基因组 DNA,经 PCR 检测,有 123 株显示为阳性,造成假阳性的原因可能是卡那霉素的筛选压强度不足导致。

在油菜下胚轴浸染农杆菌以后, 预培养时间的长 短对细胞正常分化有很大影响。预培养时间过长,下 胚轴切段形成松散型的愈伤组织, 这类愈伤组织转到 分化培养基上大多变褐死亡[10]。预培养能够促进细胞 分裂,处于分裂状态的细胞更容易与外源 DNA 整合, 从而提高转化率。同时,在预培养基中加入适量浓度 的 6-BA、2, 4-D、AgNO。以及 AS, 也会对转化率产 生影响[11]。王艳[12]等的研究也表明,添加一定浓度的 乙酰丁香酮也能够提高油菜的再生频率及转化率。本 研究中, 随着预培养时间的延长, 转化效先是升高然 后降低。适宜的农杆菌感染浓度和感染时间是遗传转 化成功与否的重要因素,菌液浓度过高或过低、侵染 时间过长或过短都会直接影响转化率。本研究结果表 明,油菜转 DR1372 基因遗传转化体系的最适宜转化 条件为: 甘蓝型油菜苗下胚轴在预培养为2d时,达 到最高的出芽率;而菌液浓度 OD600 = 0.4 时为最佳 的农杆菌菌液浸染浓度,最佳的侵染时间为90s。

Francesca D.等人的研究表明,WHy结构域在植物中具有抗水分胁迫和高敏反应等干燥应答功能^[3],将 *DR*1372 基因通过基因工程手段转入油菜中可能会

提高油菜的抗旱性,以此为基础通过培育油菜抗旱品种,可以降低干旱对油菜产量的影响。WHy 功能域作为一种干旱响应蛋白,在国内外的研究中鲜有报道,而且在植物体内的抗水分胁迫应答机制中,是 WHy 功能域独自发挥了作用还是与某些特定的序列协同发挥响应,这一问题有待进一步探究。

参考文献 (References)

- [1] A. W. Anderson, H. C. Nordon, R. F. Cain, G. Parrish and D. Duggan. Studies on a radio-resistant micrococ-cus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technology, 1956, 10: 575-578.
- [2] E. Cominelli, T. Sala, D. Calvi, et al. Over expression of the arabidopsis AMYB 41 gene alters cell expans ion and leaf surface permeability. The Plant Journal, 2008, 53(1): 53-64.
- [3] F. D. Ciccarelli, P. Bork. The WHy domain mediates the response to desiccation in plants and bacteria. Discovery Note, 2005, 21(8): 1304-1307.
- [4] J. Ingram, D. Bartels. The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 377-403.
- [5] 刘广宇,魏令波等.植物脱水素研究进展[J].生物工程进展, 2001,21(2):35-38.
- [6] 余云舟,杜娟.重组质粒导入根瘤农杆菌冻融法的研究[J]. 2003,25(3):257-259.
- [7] 王关林,方宏筠. 植物基因工程原理与技术(第一版)[M]. 北京: 科学出版社,1998:600-601.
- [8] P. J. Charest, L. A. Holbrook, J. Gabard, et al. Agrobacterium mediated transformation of thin cell layer explants from *Brassica napus* L. Theoretical and Applied Genetics, 1988, 75(3): 438-445.
- [9] 黄琼华,杨光伟.农杆菌介导法将FPF1基因导入油菜的研究初报[J]. 西南农业大学学报,2002,24(2):124-127.
- [10] 蓝海燕, 王长海等. 农杆菌介导法将 β-1,3-葡聚糖酶基因导 入油菜的研究初报[J]. 中国油料作物学报, 2000, 22(1): 6-10.
- [11] 石淑稳, 周永明等. 甘蓝型油菜遗传转化体系的研究[J]. 华中农业大学学报, 1998, 17(3): 205-210.
- [12] 王艳,曾幼玲等. 农杆菌介导 NHX 基因转化甘蓝型油菜的研究[J]. 作物学报, 2006, 32(2): 278-282.

Copyright © 2013 Hanspub