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摘  要 

为满足航空气象精细化、高准确性服务的需求，针对欧洲中期天气预报中心(ECMWF)数值模式的预报产

品，采用平均偏差订正法(MBC)、线性回归订正法(LRC)和分位数映射法(QM)，基于2025年7月3日~8月
10日的实况数据对10米风速、2米气温、2米露点温度及海平面气压4个关键要素进行逐小时订正。通过

平均偏差(MB)、平均绝对误差(MAE)、均方根误差(RMSE)等指标评估，结果表明：线性回归订正法综合

性能最优，在修正海平面气压(RMSE = 1.616 hPa)、10米风速(RMSE = 1.188 m/s)和2米露点温度(RMSE 
= 1.314˚C)上表现最佳；分位数映射法在2米气温预报中优势显著(RMSE = 2.095˚C)，较线性回归法降低

35.6%；平均偏差订正法计算简便但综合误差最大。基于此，提出“气温采用分位数映射、其余要素采

用线性回归”的混合订正策略，为航空气象精细化预报提供技术支撑。 
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Abstract 
To meet the demand for refined and high-accuracy aviation meteorological services, this study 
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focuses on the forecast products of the European Centre for Medium-Range Weather Forecasts 
(ECMWF) numerical model. Three correction methods—Mean Bias Correction (MBC), Linear Re-
gression Correction (LRC), and Quantile Mapping (QM)—are adopted to perform hourly corrections 
on four key meteorological elements, namely 10-meter wind speed, 2-meter air temperature, 2-me-
ter dew point temperature, and sea level pressure, based on the observed data from July 3 to August 
10, 2025. Evaluation using indicators such as Mean Bias (MB), Mean Absolute Error (MAE), and Root 
Mean Square Error (RMSE) shows the following results: The Linear Regression Correction (LRC) 
method exhibits the best comprehensive performance, with optimal corrections for sea level pres-
sure (RMSE = 1.616 hPa), 10-meter wind speed (RMSE = 1.188 m/s), and 2-meter dew point temper-
ature (RMSE = 1.314˚C). The Quantile Mapping (QM) method has a significant advantage in 2-meter 
air temperature forecasting (RMSE = 2.095˚C), which is a 35.6% reduction compared with the LRC 
method. The Mean Bias Correction (MBC) method is simple in calculation but has the largest com-
prehensive error. Based on these findings, a hybrid correction strategy is proposed: using QM for 
air temperature and LRC for other elements, which provides technical support for refined aviation 
meteorological forecasting. 
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1. 引言 

随着我国航空运输业快速复苏，航班量持续攀升，管制部门、航空公司及机场运营单位对气象服务

的准确性和实用性提出更高要求[1]。航空气象要素预报精度直接影响飞行安全与运行效率：夏季最高气

温决定飞机载重限额核算，冬季最低气温与相对湿度关乎航空器除冰决策，风向风速及修正海平面气压

变化影响空中交通管制模式调整[2]。 
当前航空气象服务主要依赖数值预报模式，ECMWF 模式作为全球主流系统，输出产品每 3 小时更

新，存在时间分辨率不足、要素预报具有系统性偏差等问题[3]，难以满足精细化需求。因此，基于实测

数据对数值预报进行订正优化，是提升预报精度的关键手段。 
平均偏差订正法(MBC)、线性回归订正法(LRC)和分位数映射法(QM)是经典订正算法。MBC 通过计

算历史平均偏差修正系统性偏差，算法简单[4]；LRC 建立预报值与观测值的线性关系，可同时修正系统

与尺度偏差，稳定性好[5]；QM 基于累积分布函数匹配，能修正概率分布偏差，在气温预报中优势突出

[6]。已有研究表明不同方法对要素的适配性存在差异，但针对 ECMWF 模式在我国区域航空气象要素的

系统性订正评估仍显不足。 
本研究选取 4 个核心航空气象要素，系统对比三种订正算法效果，明确适用场景并提出优化方案。

技术路线如下：(1) 数据收集与预处理；(2) 算法实现与参数率定；(3) 多维度误差评估；(4) 综合分析与

方案筛选。 

2. 数据与方法 

2.1. 数据 

本文选取 ECMWF 2025 年 7 月 3 日~8 月 10 日数值预报产品，每日 08 时、20 时(北京时)为初始场，
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发布未来 48 小时逐 3 小时预报，包含 10 米风速(m/s)、2 米气温(℃)、2 米露点温度(℃)和平均海平面气

压(hPa) 4 个要素。 
实况数据来源于机场 METAR 报文，选取对应同期观测数据，提取过去 6 小时内有效记录作为订正

依据。预处理包括：(1) 剔除超出合理阈值的异常值；(2) 线性插值填补短时缺失值；(3) 将逐 3 小时预

报插值为与逐小时实况数据匹配的时空尺度，进行时间对齐。 

2.2. 订正算法原理 

(1) 平均偏差订正法(MBC)：通过计算历史同期相同预报时次的平均偏差修正预报值，消除系统性偏

差[4]。公式： 
Bias(t) = 1/N∙∑(Obsi(t) − Forecasti(t)) 

Corrected(t) = Forecast(t) + Bias(t) 

其中，Bias(t)为第 t 预报时次的历史平均偏差，N 为样本数，Obsi(t)、Forecasti(t)分别为第 i 次历史观测与

预报值，Corrected(t)为订正后预报值，Forecast(t)为原始预报值。 
(2) 线性回归订正法(LRC)：建立观测值与预报值的线性回归模型，修正系统与尺度偏差[5]。模型： 

Obs = a∙Forecast + b 
Corrected = a∙Forecast + b 

其中 a 为回归斜率，b为回归截距，采用最小二乘法拟合；Obs为观测值，其余参数定义同前。 
(3) 分位数映射法(QM)：基于累积分布函数(CDF)匹配，将预报值的分位数映射到观测值的对应分位

数，修正预报值的概率分布偏差[6]。公式： 
Corrected = Fobs − 1(Fforecast(Forecast)) 

其中 Fforecast(∙)为预报值的 CDF，Fobs − 1(∙)为观测值 CDF 的逆函数。 

2.3. 误差评估指标 

采用国际通用指标体系[7]：平均偏差(MB，衡量系统性偏差)、平均绝对误差(MAE，反映平均误差)、
均方根误差(RMSE，综合误差分布)、相关系数(R，衡量线性相关性)、技能评分(SS，评估相对于气候平

均值的改进程度)。 

3. 结果与分析 

3.1. 单要素误差分析 

3.1.1. 海平面气压 
由表 1 可知，线性回归订正法在平均海平面气压预报中表现最优，RMSE 为 1.616 hPa，较分位数映

射法降低 31.6%；三种订正方法的相关系数均高于 0.95，表明原始预报与实况的趋势一致性良好，订正

主要作用是减小系统性偏差；所有方法均呈现负偏差，说明预报值系统性偏低。 
 
Table 1. Forecast error metrics for mean sea level pressure using different correction methods 
表 1. 不同订正方法对平均海平面气压的预报误差指标 

订正方法 MB  MAE RMSE R SS 

线性回归订正 −1.436 1.449 1.616 0.963 0.649 

平均偏差订正 −1.976 1.979 2.149 0.963 0.380 

分位数映射 −2.200 2.200 2.362 0.954 0.251 
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3.1.2. 10 米风速 
10 米风速是影响飞机起降滑跑距离和空中飞行稳定性的重要要素，其预报误差分析结果如表 2 所示，

线性回归订正法在风速预报中优势显著，是唯一技能评分为正的方法(SS = 0.007)，平均偏差仅为 0.048 
m/s，系统性偏差最小；三种方法的相关系数均较低(约 0.25)，这可能是由于风速受地形湍流、局地环流

等复杂因素影响，数值预报的不确定性较大；平均偏差订正法存在显著负偏差，表明该方法对风速的系

统性低估问题修正效果有限。 
 
Table 2. Forecast error metrics for 10-meter wind speed using different correction methods 
表 2. 不同订正方法对 10 米风速的预报误差指标 

订正方法 MB  MAE  RMSE  R SS 

线性回归订正 0.048 0.946 1.188 0.251 0.007 

分位数映射 −0.704 1.042 1.470 0.227 −0.521 

平均偏差订正 −1.216 1.357 1.744 0.251 −1.139 

3.1.3. 2 米气温 
2 米气温直接影响航空器性能参数计算和机场除冰决策，其订正效果如表 3 所示，分位数映射法在 2

米气温预报中表现最优，RMSE 为 2.095℃，较线性回归订正法降低 35.6%；三种方法的相关系数均高于

0.91，说明气温预报的趋势一致性良好；线性回归订正法虽平均偏差最小(−0.495℃)，但 RMSE 最大，表

明该方法对极端气温的预报误差控制能力不足，这与线性模型难以捕捉气温非线性变化特征的局限性相

符[6]。 
 
Table 3. Forecast error metrics for 2-meter temperature using different correction methods 
表 3. 不同订正方法对 2 米气温的预报误差指标 

订正方法 MB  MAE  RMSE R SS 

分位数映射 −1.391 1.736 2.095 0.913 0.696 

平均偏差订正 −1.685 1.948 2.272 0.919 0.643 

线性回归订正 −0.495 2.662 3.237 0.919 0.276 

3.1.4. 2 米露点温度 
2 米露点温度是反映空气湿度的关键指标，与飞机结冰风险密切相关，其订正效果如表 4 所示，线性

回归订正法综合最佳，RMSE = 1.314℃，较分位数映射法降低 22.7%。露点温度相关系数 ≈ 0.70，预报

不确定性处于中等水平；分位数映射法正偏差最大(0.844℃)，对湿度要素分布特征适配性不足。 
 
Table 4. Forecast error metrics for 2-meter dew point temperature using different correction methods 
表 4. 不同订正方法对 2 米露点温度的预报误差指标 

订正方法 MB  MAE RMSE R SS 

线性回归订正 0.350 1.045 1.314 0.704 0.457 

平均偏差订正 0.670 1.211 1.498 0.704 0.293 

分位数映射 0.844 1.344 1.700 0.686 0.090 

3.2. 综合性能评估 

对比三种订正方法的误差指标。如图 1 所示，线性回归订正在 RMSE 和 MAE 指标上整体领先，技
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能评分分布最均衡，分位数映射法仅在气温要素的误差指标上具有优势。对 4 个要素误差指标平均处理

后，线性回归订正法以平均 RMSE = 1.839、平均 SS = 0.347 位列第一；分位数映射法综合排名第二，仅

在气温上表现突出；平均偏差订正法综合最差，但计算简便(表 5)。 
 

 
Figure 1. Comparison chart of error metrics for the three correction methods 
图 1. 三种订正方法的误差指标对比图 

 
Table 5. Comprehensive performance evaluation of the three correction methods 
表 5. 三种订正方法的综合性能评估 

订正方法 平均 RMSE 平均 MAE 平均 R 平均 SS 综合排名 

线性回归订正 1.839 1.525 0.709 0.347 1 

分位数映射 1.907 1.581 0.695 0.129 2 

平均偏差订正 1.916 1.624 0.709 0.044 3 

4. 结论与讨论 

4.1. 主要结论 

1. 线性回归订正法综合性能最优，在平均海平面气压(RMSE = 1.616 hPa)、10 米风速(RMSE = 1.188 
m/s)和 2 米露点温度(RMSE = 1.314℃) 3 个要素上表现最佳，具有系统性偏差小、综合误差低的优势。 

2. 分位数映射法在 2 米气温预报中表现突出(RMSE = 2.095℃)，较其他方法优势显著，适用于温度

类要素订正。 
3. 平均偏差订正法计算简便但综合误差最大，仅适用于数据量有限或计算资源受限的简单预报场

景。 
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4. 气象要素特性对订正效果影响显著：气压和气温预报相关系数>0.91，订正效果好；风速相关系数 
≈ 0.25，即使订正仍存在较大不确定性。 

4.2. 方法适用特性与混合策略 

线性回归订正法能有效修正系统与尺度偏差，适用于线性相关性较好的要素，但对极端值捕捉不足；

分位数映射法基于分布匹配，适配气温等概率分布特征明显的要素；平均偏差订正法仅修正系统偏差，

普适性差但计算成本低。 
基于此，提出混合订正策略：2 米气温采用分位数映射法，充分发挥其温度预报优势；平均海平面气

压、10 米风速和 2 米露点温度采用线性回归订正法，利用其综合稳定性。该策略兼顾预报精度与业务实

用性。 

4.3. 改进方向与展望 

风速预报相关系数低，未来需结合机器学习融合多源数据提升精度；线性回归法对极端气温处理不

足，可引入分段线性回归或非线性因子改进；分位数映射法在气压和露点温度上偏差较大，需优化分布

函数拟合方法。 
业务应用中，建议实现订正方法自适应选择，根据要素类型和时次匹配最优方案；建立实时监测机

制，动态评估适用性；定期更新模型参数，适应气候变化。 
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