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Abstract

This study focuses on the two strong sand and dust events that occurred successively in Wusu City,
Xinjiang in winter 2025, namely the “1-23” and “2-25” events. By integrating ground meteorological
observations, ERAS reanalysis data, particulate matter concentration monitoring, and backward
trajectory simulations, a systematic comparison was conducted from the perspectives of weather
systems, dynamic structures, pre-event surface conditions, and pollutant sources. The results show
that the “1-23” event was controlled by a “north trough-south vortex” type of high-low pressure con-
frontation system, with strong convergence (divergence reaching -2 x 10-5 s-1) and high vorticity
(250 m2-s-2) at the 850 hPa layer, indicating significant dynamic uplift. It was a “multi-source com-
posite type” sand and dust event mainly driven by long-distance transport. In contrast, the “2-25”
event was a cold high-pressure front-type event with a weaker dynamic structure, where local
strong winds played a more significant role in sand lifting, making it a “locally dominant type” event.
Both events were preceded by a significant “warm-dry” type of pre-event climate background, with
surface temperatures 1.5°C ~3°C higher, precipitation 1~5 mm less, and soil moisture decreased by
0.12~0.20 m3/m?3, collectively leading to a significant increase in surface erodibility. Trajectory clus-
tering and concentration-weighted trajectory (WCWT) analysis further indicated that the “1-23”
event’s sand and dust originated from three source areas: local, southeastern Kazakhstan, and
southwestern Xinjiang, with a relatively high proportion of external transport. In contrast, the “2:25”
event was centered on Wusu and its southwestern near-source areas (trajectory proportion 70.83%,
WCWT value > 500 pg-m-3), with minimal external influence. This study clarifies the essential dif-
ferences between the two types of sand and dust events in terms of weather background, dynamic
mechanisms, and source area structures, providing a scientific basis for winter sand and dust
weather forecasting and the formulation of differentiated control strategies in the northern Xin-
jiang region.
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Figure 1. PMio concentration during the “1.23” dust event
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Figure 2. PMio concentration during the “2.25” dust event
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Figure 3. Mean sea level pressure and wind field from January 23 to 24
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Figure 4. Mean sea level pressure and wind field from February 25 to 26
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Figure 5. 850 hPa divergence (contours) and horizontal helicity (shading) at 08:00 on January 23 (left) and February 25 (right)
E s 1R 23808 R(EL). 2 A 25 R 08 FH(E%) 850 hpa BIE (F{EL)FI/k PIZIEE (FAF)

3.4. WA SRIRFE T

WA, E AT VAR XY AR S B 9 B 5 I AR R B (AL B 7R 3 ) ) S U8
E VIR R R TR S e, AN SO R B POIRS AN IR BE B, O A D
DHR TG T . AIRAITX—HLH, B 6 Bm T 55 “1-237 5 “2:257 Wb Rid ke
AP A R M RS R B R 3, LR SRS N 2015~2024 435 10 4RI RSP IME o WO B 57 8RR AE
K, PRI R R AR B 7 BON B3 PRI IR .. “1-237 DRERERTNHE, S5t X T g1
BB AR S IR R ik 3°C A, Itk sm B IE R R BZ N By i 1 5 L R A i A
FEEZ T, “2-257 WA AT R IR IR EEME AR, AR USRS 1.5C~3°C, J& T IR MR %R
Ao XFPORNEFE AL IE 5 B MM HR R 8 o 358 53 W i v 10 M SRR R 22 T R R L
A TIRATER . H, mIRERIE TS R R, TR AR R R LR AT R . RS
R R E R T RRZT, MR RGN SEERE RS, AT, Amoarba
RS T A TR LU, SR A AR I R R R R RS R AR AN e, KRR . AR
2 AR TR T, LR RE TR, RELFET TR, 32— PR 7R filk 5 XE
BME. EPRIP AR RERAER, BRI VEZENIESS, @i IR S iR - 8 mybyEeT
Lek” 5 “HE5m H AR - BRAREIRGSE 717 AR, SEREIE 1 AT R T AR R AR A
K3 W T 26 1 BE R 7R 1 TR IR UGS SR vb AR RE OB AE DOk, BRAL T R b AR Sl
LA B

RN ST B R AT IR K 2% 4F, B 7 (s A)amlfEs 1 “1-237 5 “2:257 pikibARid e
LRI A B XSS BE R B, 5 2015~2024 SRR TS 2 (8 2 A 8 0 A AR AT LR
. AR “1-237 RRACERTPIAE 55 DXV 0 K b A R 7 DX s e A A I oL [ 30 W) Al 2>, i i 1
2~5 2K, BIH—@ R RAma. i 92257 WA, HErRoKERg RS 1237 dREAA —E
FRAAPE, V40 A AL A X R RE R B g i DR AE, (B IEEERS /N, sy 1~3 220K R0 S pi it X o
IS AR KP o XA AT B K ) XS /b, v AR R R AR B BB A B TR 1 AR . —
M, FREA /D A FEK P EOR R LR T R, 30K (A R 45 a5, T S e RO AE TR I s
T, KT ERANE] T A R R S A, AR g R, BB T R R YR Y
Filo JUILAEAE 5 75 74 AN AL X S K 7 AL U X3, RIME OSBRI FER U7 7, e DUR 3
AR PIRIREE ST, IR G B0 R R SRR Y R SR Sk F . PTIRIb R RE R 2B AT

DOI: 10.12677/ccrl.2026.151020 161 SR TR


https://doi.org/10.12677/ccrl.2026.151020

HI it

55 X BRI — @ AL P RO AT IIRE K 7 sk, 2] EAR P TR S AEHE, X —HES A e iR S (R
Ry “F - B BATHIAURT S, N BRI R A RS T RN RS RSO AT EE S .

T70°N 7 70°N &=
K K
< 30 30
60°N 25 60°N 25
20 20
15 15
50°N 10 50°N 10
5 5
0 0
40°N A -5  40°N-H -5
-10 -10
-15 -15
30°N 1 20 30°N+ 220
-25 -25
-30 -30
20°N " T i 20°N v T f
60°E 80°E 100°E 120°E 60°E 80°E 100°E 120°E

Figure 6. The difference between the ten-year climatic state of ground temperature from 2015 to 2024 and the ground temper-
ature two weeks before the occurrence of the “1:23” and “2-25” sand and dust events (left: “1-23”; right: “2-25”)
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Figure 7. The difference between the ten-year climatological total rainfall from 2015 to 2024 and the surface rainfall two
weeks before the occurrence of the “1-23” and “2-25” sand and dust events (left: “1-23”; right: “2-25”)
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Figure 8. Total rainfall from 2015 to 2024, ten-year climate state and the surface rainfall difference two weeks before the
“1-23” and “2-25” dust events (left: “1-23”; right: “2-25”)
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Figure 9. Application of backward trajectory cluster analysis in the “1:23” dust event
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Figure 10. Backward trajectory clustering of the “2-25” dust event
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Figure 11. Weighted trajectory of PM1o concentration during the “1-23” dust event
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Figure 12. Weighted trajectory of PMio concentration during the “2-25” sandstorm event
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