人工智能背景下离散数学的教学改革与 应用研究

李 莉, 乔秀明

北京信息科技大学计算机学院, 北京

收稿日期: 2025年9月25日; 录用日期: 2025年11月4日; 发布日期: 2025年11月14日

摘 要

在人工智能技术迅猛发展的背景下,传统离散数学课程的教学模式面临深刻挑战。文章立足于离散数学与人工智能领域的内在理论关联,系统剖析了现有教学体系中存在的不足,提出了以人工智能典型应用场景为驱动的课程重构思路。通过整合智能化教学平台开发、跨学科案例库建设及项目实践教学等路径,构建"理论-技术-应用"三层融合的教学新范式,旨在提升学生的数学建模能力与技术创新素养,为人工智能相关专业的数学基础教育提供可借鉴的改革方案。

关键词

离散数学,人工智能,教学改革

Research on Teaching Reform and Application of Discrete Mathematics in the Context of Artificial Intelligence

Li Li, Xiuming Qiao

College of Computer Science, Beijing Information Science and Technology University, Beijing

Received: September 25, 2025; accepted: November 4, 2025; published: November 14, 2025

Abstract

Against the backdrop of rapid advancements in artificial intelligence (AI), traditional teaching modes of discrete mathematics courses are facing profound challenges. Based on the intrinsic theoretical relationship between discrete mathematics and AI, this paper systematically analyzes the deficiencies in existing teaching systems and proposes a course restructuring approach driven by typical AI

文章引用: 李莉, 乔秀明. 人工智能背景下离散数学的教学改革与应用研究[J]. 创新教育研究, 2025, 13(11): 333-339. DOI: 10.12677/ces.2025.1311875

application scenarios. By integrating the development of intelligent teaching platforms, the construction of interdisciplinary case libraries, and project-based practical teaching, a novel teaching paradigm that blends "theory, technology, and application" into a cohesive framework is constructed. This approach aims to enhance students' capabilities in mathematical modeling and technological innovation, providing a referential reform strategy for the foundational mathematics education in AI-related disciplines.

Keywords

Discrete Mathematics, Artificial Intelligence, Teaching Reform

Copyright © 2025 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

近年来,人工智能技术的迅猛发展正深刻重塑着社会生产方式和各行业产业形态,这对高等教育的知识体系与人才培养模式提出了前所未有的新要求与新挑战。在这一宏观背景下,作为人工智能、计算机科学、数据科学等众多前沿科技领域核心基础的离散数学,其教学改革的紧迫性与重要性日益凸显[1][2]。

离散数学以研究离散结构及其相互关系为主要对象,其内涵的数理逻辑、集合论、图论、代数系统以及组合数学等理论,为人工智能提供了描述知识、构建模型、设计算法的根本性数学工具[3]-[5]。从知识表示与推理到机器学习算法,从自然语言处理到复杂网络分析,人工智能的进步离不开离散数学的支撑[6]。然而,与之形成鲜明对比的是,当前许多高校离散数学课程的教学模式仍相对传统,存在诸多不足:其一,教学内容往往侧重于理论推导与孤立知识的传授,与人工智能的实际应用场景关联较弱,导致学生难以建立直观认知并理解其前沿价值;其二,教学方法以教师讲授为主,学生被动接受,缺乏激发创新思维与实践能力的有效途径;其三,考核方式单一,难以综合评价学生运用离散数学知识解决复杂工程问题的能力。这种理论与实践脱节的教学现状,使得课程难以有效承担起为人工智能领域培养具备扎实数学根基与创新能力人才的核心使命[7]-[9]。

离散数学作为计算机科学的核心基础课程,其教学改革一直是学术界关注的焦点。近些年很多研究人员提出离散数学的改革方案,但此类改革侧重于课程内容本身的更新与重组。早期研究多集中于引入更多计算机科学应用实例[10] [11],或对特定难点章节(如数理逻辑、图论)进行教学法层面的优化[12]。其贡献在于丰富了教学内容,但未能从根本上改变"教师讲授、学生听讲"的被动教学模式,理论教学与实践应用之间仍存在鸿沟。随着信息技术的发展,许多研究者尝试将多媒体课件、在线教学平台和编程工具(如 MATLAB、Python)引入课堂[13]-[15]。此类改革侧重于课程内容本身的更新与重组,虽提升了教学的直观性和互动性,但其技术应用多停留在知识呈现和习题求解层面,技术作为"辅助工具"而非"认知桥梁",未能深度赋能于学生数学思维的培养与创新能力的转化[16]。

综上所述,现有改革模型在内容、技术或实践单一维度上取得了进展,但普遍缺乏一个将三者进行 系统性融合的框架。多数方案未能充分利用人工智能这一应用场景,也未能构建一个能支持理论探索与 技术实践相结合的教学环境,这为本研究的开展提供了明确的创新空间。

因此,本研究立足于离散数学与人工智能领域的内在理论关联,系统性地推进其教学改革,直面上

述挑战,探索一条以人工智能典型应用场景为驱动的课程重构新路径。本文拟通过整合智能化教学平台、建设跨学科案例库、推行项目式实践教学等多种手段,系统性构建一个"理论-技术-应用"三层深度融合的教学新范式。该研究的意义在于:在实践层面,能够有效激发学生的学习兴趣与内在动力,显著提升其数学建模、算法设计与技术创新的综合素养;在理论层面,为人工智能时代下的基础数学课程教学改革提供一个可借鉴、可推广的方案范式,对推动相关专业人才培养质量的提升具有积极的参考价值。

2. 离散数学在 AI 中的核心应用与教学转化

2025 年教育部等九部门联合发布《关于加快推进教育数字化的意见》,意见中提出坚持应用导向、数字赋能推动教育高质量发展,助力教育强国建设。这一战略导向为离散数学教学改革提供了政策支撑和技术路径。离散数学作为研究离散量结构及相互关系的现代数学分支,其思想与方法已渗透至人工智能的各个层面。它不仅是描述人工智能领域计算模型、数据结构与算法逻辑的形式化工具,更是驱动其技术创新的核心理论引擎。理解离散数学在 AI 中的核心应用,是重构其教学内容、推动教学改革的首要前提。

Table 1. Mapping relationships between discrete mathematics modules and AI 表 1. 离散数学各模块与人工智能技术映射关系表

离散数学 模块	核心概念	在人工智能中的具体应用与技术映射
数理逻辑	命题逻辑、谓词逻辑、一阶逻辑、推 理规则	知识表示与推理: 是专家系统、知识图谱和自动推理的基石。 形式化验证: 用于验证算法、硬件电路和 AI 系统(如自动驾驶决策逻辑)的正确性。 逻辑编程: Prolog 等语言直接基于谓词逻辑。 机器学习: 决策树模型的规则提取、归纳逻辑编程。
集合论	集合、关系、函 数、无限集	数据基础: 所有数据结构(列表、树、图)和数据库理论的数学基础。 知识分类与表示: 用于对概念、实体进行归类和组织。
图论	图、树、路径、连 通性、遍历算法	神经网络:最基本的计算图(Computational Graph)就是一种有向无环图(DAG)。 知识图谱:本质上是一个揭示实体之间关系的语义图。 搜索与推荐算法:网页链接分析(PageRank)、社交网络分析(社区发现、影响力最大化)、路径规划。
代数结构	群、环、域、格、 布尔代数	密码学与安全: 现代加密算法(如 RSA、ECC)严重依赖群、域论。 深度学习优化: 梯度下降等优化过程在向量空间(一种代数结构)中进行。

如表 1 所示,离散数学与人工智能技术存在天然的内在关联和深度映射。数理逻辑驱动知识图谱的自动推理,集合论优化特征空间,图论支撑图神经网络(GNN)的底层架构。这种学科本质的契合性为 AI 赋能教学提供了理论基础。然而,在数理逻辑部分,传统教学多停留在真值表、逻辑等价等抽象概念演算,缺乏如何用逻辑形式化表示现实世界知识;图论部分,当前课程对图论的讲授常集中于欧拉图、哈密顿图等经典理论,而对图的遍历算法、最短路径算法、图嵌入等与 AI 紧密相关的现代应用涉及不足;集合论部分,教学内容往往将集合与关系作为独立的数学章节,未能清晰揭示其如何作为数据建模、存储与查询的基石,与后续的数据库、知识图谱等计算机课程存在脱节;代数结构部分因其高度抽象,常成为教学难点。学生因看不到其与安全通信、神经网络计算等实际技术的联系而感到困惑,学习动机不足。

基于上述应用剖析,可总结出当前离散数学教学存在的三大核心脱节:

1) 理论教学与应用场景脱节: 教学内容偏向于数学理论的自我完备性, 缺乏与前沿 AI 技术和典型

应用场景的有效关联,导致学生"不知为何而学"。

- 2) 知识传授与能力培养脱节:教学方式重理论推导和习题求解,轻实践建模与创新应用,未能有效培养学生将现实问题抽象为离散模型并利用数学工具解决复杂问题的能力。
- 3) 课程孤立与学科交叉脱节: 离散数学与后续的专业课程(如机器学习、数据结构、数据库)之间缺乏有机联动,未能体现其作为基础学科在课程体系中的支撑性和服务性作用。

3. "理论-技术-应用"三位一体的离散数学教学改革方案

针对传统教学中理论、技术、应用相互割裂的痛点,本次改革旨在构建一个以人工智能典型应用场景为驱动、以智能化教学技术为赋能手段、以深化离散数学理论理解与创新应用为根本目标的融合式教学新范式。

3.1. 理论层重构: 面向 AI 的知识点融合与案例浸润

理论是教学的根基。本次改革对理论层的重构,核心在于实现从"学科导向"到"应用导向"的根本性转变,旨在将离散数学从一个独立的数学分支,重塑为服务于人工智能创新的"活"的数学语言。此重构并非对知识点的简单增删,而是进行一场结构性的融合与重塑,使其从静态的、自洽的知识体系,转变为动态的、面向 AI 应用的"思维工具包"和"知识图谱"。具体通过以下三个层面实现:

首先,在内容组织上,打破传统教材的线性结构,依据其赋能 AI 技术的核心功能,将知识点重组为"逻辑与知识表示"、"图论与关系网络"、"集合与数据基石"及"组合与算法优化"四大模块。这种模块化设计使学生清晰认识到每个数学工具集的"用武之地"。为了打破传统教材按数学分支独立成章的线性结构,依据其在 AI 领域解决的核心问题,可以将离散数学内容进行如下重构:

- 1) 【模块一】逻辑与知识表示:整合命题逻辑、一阶谓词逻辑。聚焦如何将人类知识和推理规则(如"如果下雨,则地湿")形式化为机器可读、可处理的逻辑语句。明确其作为知识图谱、专家系统、智能合约的数学基础。例如,在讲授"一阶谓词逻辑"前,先展示知识图谱中"姚明-职业-篮球运动员"这样的三元组,并提问:"计算机如何理解'姚明是一位篮球运动员'并推理出'姚明擅长运动'?"以此引出谓词逻辑的必要性和强大能力。
- 2) 【模块二】图论与关系网络:整合图的基本概念、树、路径算法、匹配等。聚焦如何用图模型描述万物之间的关联(如社交网络、交通网络、神经网络)。明确其作为图神经网络、推荐系统、路径规划、自然语言处理(句法分析树)的核心模型。例如,在讲授"最短路径算法"前,以高德/谷歌地图的导航功能为引,提出核心问题:"从 A 点到 B 点,有成百上千条路径,程序如何在一秒内找到最快的那一条?"这将瞬间激发学生对 Dijkstra 等算法原理的探索欲。
- 3) 【模块三】集合与数据基石:强化集合、关系、函数的概念。聚焦阐述关系代数与数据库查询(SQL)的本质联系,明确集合论是所有数据结构、关系型数据库,乃至知识图谱数据存储的底层理论。
- 4) 【模块四】组合与算法优化:强化排列组合、离散概率初步。聚焦分析算法复杂度,明确其为算法设计与分析、搜索引擎排名、概率图模型提供计数与评估框架。

在教学方法上,本文推行"场景先行,案例浸润"策略,在每个模块伊始即嵌入标志性 AI 应用场景 (如知识图谱、智能导航),将抽象理论的讲授置于真实问题情境中,从而激发学习动机,降低认知门槛。最后,强调知识互联,通过剖析"电影推荐系统"等综合案例,展示逻辑、图论、集合等模块如何协同解决复杂问题,引导学生构建跨章节的、立体的"AI 数学知识图谱",而非记忆孤立的定理。通过上述"模块化重组、情境化教学、跨域关联"的协同改革,理论教学的核心目标得以升华:从传授离散数学知识本身,转变为培养学生运用离散数学语言对 AI 领域问题进行形式化描述和建模的底层能力,为后续

技术与应用环节奠定坚实且富有洞察力的基础。

3.2. 技术层赋能:构建沉浸式、智能化的教学支撑环境

技术层赋能是本次改革方案实现"三位一体"融合的关键桥梁。其核心使命是破解离散数学的高度抽象性,将原本停留在符号与想象中的数学概念和推理过程转化为可视、可交互、可验证的沉浸式体验,并为个性化学习提供可能。本次改革旨在构建一个集"探索、验证、创客、评估"于一体的智能化教学环境,其核心构成如图 1 所示。

首先,建设交互式理论探索平台,实现概念与过程的可视化。例如,针对数理逻辑模块,平台将集成逻辑公式编辑与可视化工具,学生输入逻辑表达式后可即时生成其真值表、语义表或推理树,动态观察推理步骤,使符号演算过程直观可见。针对图论模块,将引入图形化算法仿真实验室,学生可通过拖拽节点、连接边来构建网络模型(如社交网络、交通图),并动态运行最短路径、最小生成树、PageRank等算法,实时观察算法执行过程中节点的颜色变化、路径的形成等,将静态的算法描述转化为生动的探索实验。这种"所见即所得"的交互,极大地降低了理论学习的认知负荷,培养了学生的数学直觉。其次,构建智能化学习支持系统,实现个性化辅导与评估。基于学习分析技术构建智能辅助系统,一方面,系统能根据学生在平台上的作业和测验数据,自适应地推送针对其知识薄弱点的补充学习材料和练习题,实现"因材施教"。另一方面,开发自动化测评反馈引擎,对逻辑证明、组合计算等具有规范步骤的作业进行自动批改,并提供即时性、指导性的反馈,将教师从繁重的重复性劳动中解放出来,从而能更专注于启发式教学和项目指导。

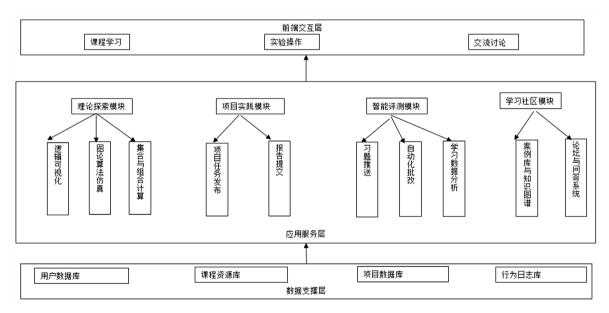


Figure 1. Intelligent teaching platform functional architecture diagram 图 1. 智能化教学平台功能架构图

3.3. 应用层实践:项目驱动的能力转化与价值实现

应用层实践是本次改革方案实现知识内化与能力升华的终极环节,其核心目标是打通从理论理解到 创新应用的"最后一公里"。本层面以"AI概念项目"为核心驱动,设计了一套阶梯式、全周期的实践 方案,确保学生在解决贴近现实的复杂问题过程中,将离散数学知识转化为解决实际问题的创新能力。

首先,实施贯穿学期的"AI概念项目"驱动模式。课程伊始即发布一项综合性项目任务(如设计一个

简易的社交网络推荐系统或课程知识问答助手)。该项目要求侧重于数学建模与逻辑设计而非复杂的编程实现。学生以小组为单位,在学期进程中,随着理论模块(逻辑、图论等)和技术工具(可视化平台)的逐步学习,分阶段地将其应用于项目攻关。例如,在学习图论后,需要用图模型定义项目中的实体关系;在学习逻辑后,需用规则描述系统行为。这种设计迫使学生主动寻找理论工具解决实际问题,从而实现知识的深度整合与迁移应用。其次,训练学生从模糊的应用场景中,精准识别核心要素,并将其抽象为离散数学对象(如集合、关系、图);并要求学生用规范的数学语言(逻辑公式、图论术语)严谨地描述其设计方案,撰写技术报告,锻炼其形式化表达能力。

为验证前述"理论-技术-应用"三位一体教学改革方案的有效性,本研究于 2023 年 9 月至 2024 年 12 月期间,在北京信息科技大学网络工程专业大一年级的离散数学课程中进行了为期两个学期的教学试点。首先对同一位教师任教的班级进行连续两年的跟踪。第一年采用传统的讲授式教学,第二年采用本文提出的改革方案教学。

- 数据收集:在每个学期末,对两个班进行同一套"离散数学建模能力测试",试卷侧重考察运用知识解决 AI 场景问题的能力,并在学期末对实验班发放学习体验问卷。
- 定性数据:根据预设的评分标准(数学建模合理性 30%,技术实现完整性 30%,创新性与报告质量 40%)对实验班最终项目作品进行打分。
- 结果与分析:能力测试结果显示,两个班级在成绩上存在显著差异(t(100)=4.32,p<0.001)。第二年的平均分(M=82.5,SD=8.1)显著高于第一年(M=75.3,SD=9.7),表明改革方案有效提升了学生的综合应用与建模能力。问卷调查结果显示超过90%的学生认同或非常认同"项目驱动提升了我的学习兴趣"、"我能更好地理解理论知识的实际用途"以及"我的团队协作和问题解决能力得到了锻炼"。

综上,我们结合"理论-技术-应用"三位一体的教学改革方案,进行一场系统性、结构性的范式重构。其核心创新在于打破了传统教学中理论、技术、应用相互割裂的线性模式,通过以"AI概念项目"为驱动中枢,成功构建了一个三者深度耦合、循环促进的教学生态。在该生态中,理论教学作为按需供给的工具箱,技术平台作为破解抽象、实现验证的赋能器,项目实践则作为知识整合与能力转化的试炼场,三者围绕解决真实问题的共同目标,形成了一个紧密协作、正向反馈的有机整体。

4. 结束语

在人工智能技术重塑世界图景的今天,夯实其赖以发展的数学基础,并革新与之适配的人才培养模式,已成为高等教育的紧迫课题。本文聚焦于离散数学这一与 AI 领域血脉相连的核心基础课程,对其教学改革进行了系统性的探索。深刻剖析了离散数学与人工智能的内在理论关联,揭示了传统教学体系与应用需求间的深刻脱节,论证了改革的必要性。本文的核心贡献在于提出并详细构建了一个"理论-技术-应用"三位一体的教学改革新范式。该范式以 AI 典型应用场景为驱动,以智能化技术为赋能手段,以项目式实践为能力转化路径,成功地将离散数学从一门抽象的纯理论课程,重塑为一门培养学生数学建模能力与 AI 创新思维的桥梁课程。

当然,本方案的有效性与普适性仍需在更广泛的教学实践中接受检验,其具体实施也面临着案例库深度建设、教师跨学科素养提升以及教学资源持续投入等挑战。这些也将是未来研究的重点方向。我们相信,这一立足于融合与创新的改革思路,不仅为离散数学教学提供了具体可行的方案,也为人工智能时代背景下如何开展基础学科教学,提供了值得借鉴的理论视角与实践框架。最终,期望本研究能为培养具备坚实数理基础和卓越创新能力的未来人才贡献一份力量。

基金项目

本文由北京信息科技大学校级教学改革一般项目(项目编号: 2024JGYB26)及北京市教育委员会科学

研究计划项目(KM202411232004)资助。

参考文献

- [1] 程珍,郑红波,雷艳静,等.人工智能背景下以学为中心的离散数学教学改革[J]. 计算机教育,2025(8):183-188.
- [2] 丁俊文, 宫玺. 基于 AI 大模型的离散数学教学资源建设与实践[J]. 计算机教育, 2025(7): 80-85.
- [3] 刘勇. 离散数学数理逻辑部分自动判卷系统的设计与实现[D]: [硕士学位论文]. 成都: 电子科技大学, 2025.
- [4] 李娟. 现代教育技术融入"离散数学"任务驱动教学探讨[J]. 教育教学论坛, 2025(6): 133-136.
- [5] Wei, D. (2024) Research on the Teaching of Discrete Mathematics Course in the Context of Talent Cultivation of Applied Big Data and Artificial Intelligence Professionals. *Journal of Higher Education Teaching*, **1**, 112-116. https://doi.org/10.62517/jhet.202415317
- [6] Wang, Q.M., Chang, X.F. and Xu, P.F. (2025) Research on the Innovative Teaching of Discrete Mathematics Courses under the Background of Engineering Certification. *Advances in Educational Technology and Psychology*, **9**, 1-7.
- [7] 谭作文, 伍琦, 熊星星. 人工智能赋能"离散数学"课程教学方法探索[J]. 当代教育理论与实践, 2025, 17(1): 22-28.
- [8] 王霞,王树梅,谢春丽.融合课程群的计算机专业离散数学课程教学探索[J]. 江苏师范大学学报(自然科学版), 2024, 42(2):79-81.
- [9] Zhong, W., Zhang, W. and Zhang, G. (2025) AI + Education: Discrete Mathematics Teaching Reform Integrated with Multiple Disciplines. *New Explorations in Education and Teaching*, **3**, 359-362.
- [10] 李娣. 人工智能时代的离散数学教学研究[J]. 软件导刊, 2022, 21(5): 207-210.
- [11] 杜丽美, 张剑妹. 基于 OBE 和 PBL 融合的离散数学教学改革[J]. 计算机教育, 2023(5): 149-154.
- [12] 贾经冬,李卫国. 基于计算思维面向能力培养的离散数学教学改革[J]. 计算机教育, 2021(9): 152-155.
- [13] 韦昌法, 刘惠娜. 基于 SPOC 的"离散数学"翻转课堂教学改革初探[J]. 新课程研究(中旬刊), 2015(9): 39-40.
- [14] Shiono, K. and Tsujimoto, Y. (2000) Mathematical Structure of Stratigraphic Classifications Generated by Given Classifications-Boolean Algebra and Distributive Lattice-. *Geoinformatics*, 11, 122-123. https://doi.org/10.6010/geoinformatics1990.11.2 122
- [15] 郝培男, 宁慧聪. 基于知识图谱的《离散数学》课程思政教学模式构建与实践[J]. 教育信息技术, 2025(6): 46-50.
- [16] 马丽, 张云飞, 李淑佳, 等. 基于 OBE 理念的应用型本科离散数学混合式教学实践[J]. 计算机教育, 2025(4): 224-228.