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Abstract

Amid the rapid development of artificial intelligence, university linear algebra teaching, which
serves as a fundamental theoretical component of deep learning, requires thorough re-examination.
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This paper summarizes and reflects on existing teaching models, explores the connections between
deep learning and linear algebra knowledge points, and designs teaching cases that closely inte-
grate theory with practice. These cases aim to stimulate students’ curiosity and help them recognize
the indispensable role of mathematical theory in advancing artificial intelligence. Using the instruc-
tional design of matrix linear operations as an example, this paper vividly illustrates how matrix
operations, particularly matrix multiplication, are applied in image processing and neural net-
works through concrete examples including grayscale images and house price prediction. This ap-
proach enables students to directly appreciate the practical value of linear algebra.
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Figure 1. The relationship between black-and-white images and matrices
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Figure 2. Matrix subtraction and the conversion to images
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Figure 3. The transmission process of a
simple neural network
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Figure 4. A simplified training process for house prices
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Figure 5. Computer simulating the human brain to learn
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