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Abstract

To address the deficiencies of the Multi-Verse Optimizer in solving optimization problems, this pa-
per proposes an improved Multi-Verse Optimizer by combining the traditional simplex method with
the Lévy flight strategy. By integrating these two strategies, the proposed algorithm significantly
enhances the solution accuracy of the original MVO and accelerates its convergence speed. Verified
by 11 standard test functions, the new algorithm shows strong advantages in function optimization,
with test results being closer to the theoretical optimal values. When applied to engineering opti-
mization problems, it also achieves favorable effects.
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Figure 1. Wormhole existence probability versus travelling distance rate
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Table 1. Benchmark test functions
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Benchmark Test Functions D Range Optimum
D
F=>x 30 [—100,100] 0
i=1
D D
Fy= x|+ [Tl 30 [~10,10] 0
i=l i=1
D i
E= Z(Zx,] 30 [100,100] 0
i=l \_j=1
F, =max{|x|,1<i< D} 30 [~100,100] 0
< 2)? 2)?
F, 22[100(%1 —x7) +(1-x7) } 30 [-30,30] 0
i=1
D
Fo=)|x+05] 30 [~100,100] 0
i=1
D
F =[x} ~10cos2zx, +10] 30 [-5.12,5.12] 0
i=1
12 ) 12
F, =—20exp| 0.2 BZX" —exp BZCOSZH'XI. +20+e 30 [-32,32] 0
i=1 i=l
F= L 3 [Teos| 2|41 30 600,600 0
Pa00057 A\ 006001

F,= %{IOSin2 (ﬂyl)+ f(yi —1)2 [1 +sin’ (ﬂ'yw)} + (yD - 1)2}
i=1
D

+> u(x,,10,100,4)

= 30 [-50,50] 0
k(x,. —a)m X, >a
y,=1+x"+1 u(x,,a,k,m): 0 -a<x<a
k(—x,.,—z)m x,<a
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F, = O,l{sin2 (37sz ) + i(xi — 1)2 [1 +sin’ (37le. + 1)] + (x,) - 1)2 [1 +sin’ (27zx,)
i=1

b 30 [-50,50] 0
+Y u(x,,5,100,4)
pan
3.3. KWHER
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Table 2. Results of unimodal benchmark functions
2. BIERBEHER
g gZR BA cS FPA MVO LSMVO
RAUE 2.8900E+04 1.1628E-01 4.4303E-01 6.0955E-01  2.4779E-147
wZH 5.0388E+04 3.2955E-01 1.0333E+00 2.0232E+00 2.6827E-74
H e 4.1052E+04 1.8779E-01 7.1094E-01 1.3094E+00 1.3413E-75
PRt 22 5.6270E+03 5.7876E—02 1.3053E—01 4.1312E-01 5.9986E-75
wALE 1.6267E+04 2.1425E+00 2.5991E+00 4.5847E-01 6.9593E-85
RZE 2.4811E+08 7.5428E+00 5.0776E+00 1.1816E+02 8.0114E—49
- FHME 1.8092E+07 4.3598E+00 3.8097E+00 6.7896E+00 4.0070E-50
PR 22 5.5148E+07 1.2895E+00 6.4042E—01 2.6217E+01 1.7914E—49
RAE 2.7705E+04 2.5733E+00 3.5695E—01 1.1125E+02  5.7613E-138
REH 8.8552E+04 7.8447E+00 9.2086E—01 3.0820E+02 1.1954E-79
" e 5.1820E+04 5.0493E+00 5.9536E-01 2.0522E+02 6.0108E-81
PRtz 1.6682E+04 1.4706E+00 1.4290E-01 6.2326E+01 2.6722E-80
wALE 6.3727E+01 7.3870E-01 3.3337E-01 1.2551E+00 5.8467E-75
IEELEN 7.7879E+01 1.2198E+00 5.8009E—01 3.5464E+00 4.0606E—41
F4 FHIME 7.0004E+01 8.7301E-01 4.5841E-01 2.0899E+00 2.1190E-42
bk 3.8411E+00 1.0763E-01 6.2636E—02 6.3651E-01 9.0633E—42
wAE 3.4712E+04 4.4565E+01 8.4212E+01 3.3752E+01 1.4957E-07
REH 5.4196E+06 1.5287E+02 1.6467E+02 2.6561E+03 7.1850E+00
e e 1.4936E+06 8.6509E+01 1.2555E+02 4.9915E+02 2.5181E+00
PRtz 1.2986E+06 3.2110E+01 2.4406E+01 7.8531E+02 2.1465E+00
wARE 2.5284E+04 1.2648E-01 1.2498E+00 8.0899E-01 1.0896E-10
IEELEN 5.1247E+04 3.2947E-01 3.1529E+00 1.9608E+00 2.7168E-10
o P91 3.9766E+04 2.0909E-01 1.9834E+00 1.2461E+00 1.6009E-10
P22 7.0489E+03 6.4236E-02 4.9561E-01 3.6952E-01 3.9965E—11
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Table 3. Results of multi-modal benchmark functions

F 3. BIERHKBER

23k gR BA Cs FPA MVO LSMVO
wAAE 1.2063E+02 4.3862E+01 1.5553E+00 7.0478E+01 0
RZE 2.6397E+02 6.5374E+01 6.2159E+01 1.6060E+02 0

7 TEME 2.0633E+02 5.3863E+01 2.5231E+01 1.1398E+02 0
PRtz 4.0418E+01 6.4591E+00 1.6720E+01 2.3051E+01 0
wALE 1.8824E+01 2.5968E+00 1.2640E+00 5.3806E—01 8.8818E-16
wZH 1.9953E+01 3.5927E+00 2.2865E+00 3.0380E+00 8.8818E-16

e FHIME 1.9211E+01 3.0461E+00 1.7459E+00 1.6963E+00 8.8818E-16
bk 3.3019E—01 3.2588E-01 2.4307E—01 5.9864E—01 0
RAE 4.7801E+02 1.0271E—02 1.2722E—02 7.1059E-01 0
wZE 6.6798E+02 3.6964E-02 4.8351E-02 1.0100E+00 0

® P 5.7293E+02 2.0333E-02 2.8755E—02 8.7723E-01 0
PRt 22 4.8753E+01 6.9765E—03 9.5901E—03 7.4760E-02 0
RILE 1.5742E+06 1.3387E—02 5.6834E-02 9.9508E-02  2.2006E-13
RZE 1.8804E+07 1.6785E-01 1.6051E—01 3.5621E+00  5.2129E-12

o T E 8.2380E+06 6.3029E—02 1.0838E—01 1.6166E+00  2.7525E—12
bk 5.9157E+06 4.2813E-02 3.4225E-02 9.7694E—01 1.3039E-12
RRE 5.4082E+06 3.1026E+00 5.7330E-01 7.4449E-02  2.4393E-12

il wZH 9.0013E+07 5.7181E+00 1.8728E+00 4.8664E—01 1.1289E+00
P 5.0547E+07 4.4302E+00 1.2610E+00 2.1568E-01 7.9103E-02
bRt 22 2.2612E+07 7.3259E-01 3.5735E-01 1.2039E-01 2.6701E—01

M7 2l 0L, fERIERETHE: TR F, LSMVO MEEREEER T 'Y, Mg T LR
[ CS w146 MRS EFIAME T, LSMVO KRR N e, AR TFEM CS mith 74 AN
Bio STTHREE,, LSMVO MEMEREES T e, BHLHE M MVO $27+ 84 N s 76 T ME
JiTh, LSMVO [FRfFR I N e™, th MVO #5750 M. T F,, LSMVO KR EAM
SFIEREIEB R T e Rl ™, e FPA MR FI-F5ME = 137 ANF1 80 MRS . 6T B %L F, , LSMVO
BB RS B RS L3 7 e Mle™, H FPA M CS KB & 74 DA 41 DNEEER . *)
T ¥ F,, LSMVO M RE R P SMERS LS T e M e, AR TER CS KIS EM TR 8
AL ABES . W TEREF, , LSMVO WEMAEF-FERERER] T e, R TFEr CS HmEH 9
MR

ZUERE R TT I : X T REF, , LSMVO EAMUE . ez E T baiEZESN 0, VERERZEMR
F BA. CS. FPA 1 MVO. Xt T ¥ F,, LSMVO AR BEEF P HERSEILE T e, BEMm
FH AT L E %, Hﬁﬁ‘@%ﬂy 0, BHHAFMRBmMIEN. X TR F,, LSMVO MEE. &%
B FHME. WRAEZESN 0, X2 BA. CS. FPA Il MVO FTEEEEIN . ST % F,, LSMVO KAl
EAFIERS AR T eV fe™, %5 CS il FPA KX FEbR s 11 AN 10 MRS ST REE, ,
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Figure 3. Evolution curve of fitness for F1
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Figure 5. Evolution curve of fitness for F3
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Figure 6. Evolution curve of fitness for F4
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Figure 7. Evolution curve of fitness for F5
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Figure 8. Evolution curve of fitness for F6
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Figure 10. Evolution curve of fitness for F8
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Figure 11. Evolution curve of fitness for F9
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Figure 12. Evolution curve of fitness for F10

& 12. F10 AYIE R o S ss ph sk

DOI: 10.12677/csa.2026.161004 39 THEAURF 5 R


https://doi.org/10.12677/csa.2026.161004

FEW]

F11
10"
‘\
10° |\, |
AN
N BA
6 ™o ——CS
5 10 s FPA
= AN
@ \\\ ----- MVO
g8 N LSMVO
2 ~_
st et
Q 2 L‘
B 10 L, .
‘~\\‘
0 oS
10 + ~
1“‘\
1 0_2 L L L
0 100 200 300 400 500

AR H
Figure 13. Evolution curve of fitness for F11

13. F11 BY3&E LT R By s el 2

M 3~13 BT DAdE— P50 0F LSMVO BIfEHEPE. A3, B4, Bl 5. B 10 RVEH, JHMEED
BT WSICIRAS I, LSMVO R4k 2 RIS /7. BRI SE R W], N A4 EIE M Lévy KAT
UG LSMVO 7E R EU R B s e 35, JLIR 4SS S e Belr B S M8, IESE T SO BVETE B
e ) @ b AT AT S A
4. LSMVO BRI R 1108

P ) TARARAG I K 2 AR 2otk i, T HL AR 2 S B, BEERAMMNAREM. X
SRS AF R AR B — LR L 7 R A 2 BRI, XA AR I 2 (A RS R ST 2, LS — L2 B ) BVE AR
BN BRI o fRIRL AR A ) BT S5 R A B AR AR, REFR B ) T AT A AR
NG AT RO EIX B AT 4R 0 TRER AL I R, BRI 5 2 R 2, s o 0 s 0%,
B AR AL I T R, N L TR AR 1R IR R A DA SR AR TG 24 TR S DA )

Figure 14. Welded beam design
14, 1BEREITHREE
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PR T B R R U B R DR S — € BB, Br IR R IR B A0 2 ol 1 1) AR
MG SRR AR KM AN ) o, RGP, K O FNERN o o Hft, KRR
BEEIYIN Sy v = 13600 psi, HKIEFN o, = 30000 psio XHAHH LSMVO fifik T #2328 )

A, DABE— D ISR R A R TR RS . IR RSO A 14 PR

BB A A R, 4) BURIREEIERE h , BRROUE B MK 1, BRRORRIE ¢ ATRRRIENE b .

FRAEGEBLU ) A AR R -
=[x x, x; x,]=[h11b]

w/Mb
f(¥)=1.10471x’x, +0.04811x,x, (14.0 + x,)
LI g AT
& (¥) =7(¥) =7 <0,
8 (¥)=0(¥)-0,, <0,
85 (¥)=0(X) =8, <0,
g, (¥)=x-x,<0,
gs(X)=P-P.(X)<0,
2, (¥)=0.125-x, <0,
2, (¥)=1.10471x +0.04811x,x, (14.0+ x,) - 5.0 < 0,
AR
0.1<x <2,
0.1<x, <10,
0.1<x, <10,
0.1<x, <2,
sk

6PL 6PL’
=\ 5(3) =
(x) X, (x) Exix,
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4.013E

LZ
P =6000/b,
L =14in.,

0, =0.25in.,
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Table 4. Comparison results of the welded beam design problem
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