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Abstract

To address the low efficiency of traditional manual aircraft inspection and the issues of detection
blind spots and difficulty in identifying unknown defects in existing automated systems, this paper
proposes a novel autonomous mobile robotic inspection system. The system employs a mobile ro-
bot equipped with multi-modal sensors for comprehensive data acquisition, with the proposed Mix-
ture-of-Experts Zero-Shot Anomaly Detection (MoE-ZSAD) model serving as the core algorithm. By
semantically aligning multi-dimensional image features with textual descriptions of normal states,
the model achieves precise identification of various known and potential unknown defects without
requiring training on defect samples. Experimental results demonstrate that the model performs
exceptionally well in defect detection within complex scenarios, achieving a Pixel-Level Area Under
the Receiver Operating Characteristic Curve ( Pixel-AUROC ) exceeding 0.96. It significantly outper-
forms current benchmark models in terms of both detection accuracy and generalization ability.
Analysis indicates that this method effectively overcomes the limitations of traditional visual detec-
tion regarding dependency on anomalous samples and validates the feasibility of utilizing cross-
modal technology for industrial inspection. This study not only provides an efficient, objective, and
highly adaptive solution for automated pre-flight inspection, significantly enhancing aviation mainte-
nance safety and operational efficiency, but also presents a new technical pathway for the intelli-
gent operation and maintenance of large-scale equipment.
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Figure 1. Overall system architecture diagram

B 1. BiERGERAE

HATR M IPLE AR B RS S R O D im B K B S s 5. BAR R G WA 1 Frs,

DOI: 10.12677/csa.2026.161008 90 THEAURF 5 R


https://doi.org/10.12677/csa.2026.161008

EHS

EEBPLS A A RTT, hORIERIIRSS A AT A S B DL P 280 DU M OB o LR, %)
I 2 4 [ O 2 A5 B AT HUE A L

2.1.1. HBEARERT

TEN RGN IPATIZ O, HLBS AR B AR T BE IR BB RAGEE RIS 5 B &
LB ARE AR K A RS R . Bt A

1. BEEISTE: BNWARGRH BB HRE, HETFRU88E, B (hEEaEyiTEsE
I HB T PR B Car Vi vt L4 W AP ER T SO 5 KA (AR . 0K, i) T B A T s e A
WM. AT G ER T Bk B BOE T I (LIDAR) R SZ FE LI 3 45 22 /0 B 1) RTK-GPS #55t. LiDAR
TR R L Seih g A AN ShASBERS Y HEE, 11 RTK-GPS MIFRAEE K 40 1 46 6 52 S0k B, M RN 2%
N BEREAR I IR R TR A B B4 . DRI LA A HLER B B A ER BT (I Bt B b T AR 2% 150 4% A DA B
45, Plas AR % T SLAM (Simultaneous Localization and Mapping) i) S i 5%, fdi ] LIDAR 2 4
AAEFIA . AR, SRR ARSI, 454 RTK-GPS HIEK e, SEELSE s i il
MEgmEHR . BAAME, RGUELT LIDAR s30T S Y 5 J5(1F A PointNet+A5 7)), F7EAL M
AR TH 5% F AR, B GRS 2 AR AN T BT o ol 552 s 70 ASE AU 3 25 PR 353 m A 1 B T 2 kT 98%,
RERTET REMEEN.

2. ZHANLME . LA ABCS— 7S H B T RHURE o s RIS AL 345 a8 Sk Re e ok e 1
FIBE LR AT o] X I S5 A 00 3 (8 Lt 1.5 KRN 30 3 B (ARG 158 5 MTT e A PR bk 2> P45 i A
O XA TR ANUE . FLE T J7. KBIHL A A0S N CHE L fid e SO AA FEAEE (AL B 28 G 2L .

3. LIRS (ARG ORI, RS %A, B8 =k BAMfL
e, WIMSEILZ 4R A RIS BoRAE[13] [14]:

(1) FE PR WG(RGB)RGHL: R Tk 4 K 4 FrAnL, F T WHLEEm s EE, H
SRAMZL, WY DR SR JHAR T8 SR A 1 45 A MR

(2) LAMARPUZA: I8 I PRI K ML TH PN 22 5, U PR o] DL ok R T . fildn, &
B RSN I 50 [ BRGSO SR R SR, TR RILRR s BRI VOO T B T A
RSN R AT RARIE X s R4 RS 3R 10 AN 2 R BN R X

(3) ZHEHOLME RS X B RGURASOEBBOCHREAR, B&NEE IR, H—, SHLE
NEBGIR, ERETE 754 RS (R IAI ISR R A a1 S S B AR MO PR B BRI . 3L
E RGP A il ) =4S SR, T RIRE . AR TR A SO R AR A S LT B
TR EA BT, N PN R L A AR HE 151

ZRSBAE S LR — A 2RSS AN, TERHEE AT G . RS, SAEEES
(RGBLIR FAJAR A 3D 55 22) 1 560 A7 (1) b 25 HR BURFAE : RGB ] DINOv3 32+, IR ] ResNet-
50 484, 3D f#i ] PointNet FEHU LAFHIE . 2A)5, X EERFAESE A [A] J2 18 i 73 & JI#LHI (J& T Transformer [
PSR R IHO TS, NG 2HEENFRRAR. ZEE RN BU%S] MoE-
ZSAD BT L, SEILG R T B I 255 b o Kk R HT R A DA T 7 R 1) B e S i (4 52
U, BRSSOV 2 S BES R  BAR G &R, Bt RGB ST 5 IR # R 5% A1 3D 1)) L4
TEMEE A, B T NGB ORI R R (SR Be HPAl & 5 AUROC #2712 3%~5%).

2.1.2. hIEHIRFESHIEE

1 gl AR o5 % 1 RG] LLER B AE 2 B LA A B p o, ST . BRAR LRI A
MBS TS, APl A B A A B e S dh i, FFAR A A K JE o o %00 ) MOE-ZSAD ML 73 Bt

DOI: 10.12677/csa.2026.161008 91 HEHUR 5 R


https://doi.org/10.12677/csa.2026.161008

EIES

Rt B AR R S5 8% b, R e ss R B TS SR P AT e R

2. RATEME AR XA EREEEE, A A RS T SR S 4ERU . BOR
FURE « RBLAERE T b SCRISSBRAG 2  f5 8 A S PRI e A A Bt A 12800 Pl i APT 452 1 5L
PRI S Al e 55 (n TR ORI, DR OR AR (0 SEi PEATHE R E  Rp ) R Rl — LA T e oA
A2 5 R BB R E OB B

22. BEERFHEAREHRN(MoE-ZSAD)ER

HATHER A% O HARBHIE T BT H i MoE-ZSAD A5 8Y, X Pk it B 75 MRAS b fif vt 4t i B 27 2
TIETCIERT N AR FR R . AT B A B B 3] 2 o

| EiTRER I

A 4

[ SDEAEBRR ]

[ JERLE

REANSE R R
l e Py — e
' }
[ REAERER [ nRESER ] [ PEEL Y ] EERER ] [ BEER ]
[ REEHNOE ]

Figure 2. Mixture of experts (MoE) model architecture diagram
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Figure 4. Comparison of all-weather operational capabilities
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Figure 5. User interface of the automated aerial vehicle inspection system
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