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Abstract

To address the efficiency bottlenecks and hallucination issues faced by general-purpose Large
Language Models (LLMs) in handling large-scale, fine-grained text classification tasks within re-
source-constrained environments, this paper proposes a high-performance framework named
DeepConf-Verify (DCV). Building upon domain-specific fine-tuning, which elevates the accuracy
baseline of small-parameter models from under 30% to over 90%, the framework integrates a
Dual-Threshold Dynamic Confidence Gating mechanism. This mechanism utilizes token-level con-
fidence trajectories to monitor the generation process in real-time, executing an immediate “Panic
Exit” for “confused” samples and a “Fast Pass” for high-confidence samples. Furthermore, a Dual-
Model Verification protocol is employed to enforce consensus on samples within critical confi-
dence intervals, thereby mitigating tail risks. Experimental results on a single NVIDIA A100 GPU
demonstrate that DCV achieves an enterprise-grade accuracy of 95.2%. Notably, it boosts through-
put by over 1200% (reaching 60.2 comments/sec) compared to the original general-purpose LLM
system, and achieves a 24% efficiency optimization compared to a single fine-tuned model of
equivalent parameter size. The system successfully scales to process over 5 million comments
daily while keeping the manual audit rate within 4.5%. This study provides a robust theoretical
and practical paradigm for constructing high-throughput and reliable vertical-domain Al systems
in low-resource settings.
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Figure 1. Dynamic confidence gating implementation
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