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Abstract

Transformer-based methods have achieved significant progress in single image super-resolution due
to their superior ability to model long-range dependencies. However, existing lightweight Trans-
former architectures often employ channel compression or sparse window mechanisms to reduce
computational burden, which inevitably weakens the spatial continuity of local features. Further-
more, the inherent low-pass filtering nature of the self-attention mechanism limits the network’s
capacity to recover high-frequency texture details. To address the issues of frequency bias and local
information loss, this paper proposes a lightweight image super-resolution reconstruction algo-
rithm based on a Hybrid Perception and Frequency-Adaptive Gating network, named HPG-SR. First,
a Hybrid Perception Gated Attention module is designed. By utilizing a parallel local perception
branch and a learnable gating mechanism, it explicitly enhances local high-frequency details while
retaining the global receptive field of large windows. Second, a Multi-Scale Gated Feed-Forward Net-
work is proposed, which employs dual-path multi-scale convolutions and context gating to replace
traditional static activation functions, thereby enhancing the network’s adaptive selection capabil-
ity for features across different frequencies. Finally, a Contrast-Aware Feature Refinement module
is introduced to strengthen feature responses in texture-rich regions using standard deviation sta-
tistics. Extensive experiments on five benchmark datasets demonstrate that HPG-SR outperforms
state-of-the-art lightweight SR methods with comparable parameters and computational complex-
ity. Particularly on the texture-complex Urban100 dataset, the proposed algorithm exhibits supe-
rior detail recovery capability.
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1. 5|8

HL MG 5> M5 % (Single Image Super-Resolution, SISR) & 7E MIB 1L MK 737 % (Low-Resolution, LR)K]
Bk S s P (High-Resolution, HR)EE, s v AL o 538 b — AN 2 U s 253 () J 1] B IR
JEEE S POE K R, SR EIR T 2 M T#8) 2 BUR AL HE . PR 2 AR G o . MR G 428 DL B T B2 R ik 4%
A . R I AR IE TR FE S R 48 X 4% (Convolutional Neural Networks, CNN) ) 77 1A B T 0 25 3F @ [2]-
[4], 1HFEFE B0 SEi MR B LL I 2k H as 58w, AT 7E G BR B v SR 059 S Bs Jog &2 1) PR R
@, BON T REH SR BRI 0P .

AR SR J7 i L BT RSO B H ) CNN ZRK, ik 2254 5 [ 2] B AR HE 45 RIE B HLI (355
SR, CNN [ A 1 Jo 38 H 44 0 B R ) 1 JLR2 B, S M DL RO L KR B R R IRBOR &, AR 2 30E
MG R SR SR D AL BB SN 5 o N T R RIX — A8, BT Transformer 248 51N
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SR AR [6] [7]. Fofl HER JINLHI(Self-Attention, SA)5E K4 R EE /1, Transformer 287 E7EMRE L
KBk 11448 CNN.

JRE LT Transformer MR AR R U AR AR H IS T W3 527, (HIUA B8 2 S8R B v T I 35 75 2K
5w AT R Z AV A P MR . 1%, BRI A BT I AR R R (8] EAREE T
K DB B I ke e /R, BEHEER I ErE RS, A2 FEsENT SR 1F
K Z R E BN EISCER T . R, N TR E TERE AT EE AL, BUA 3R 7 v 5 R A
TERAR 75 [A) B 45 SO R R 55 SRR (9] [10]0 X B34 BARHIL 1 S0 R RS2 BT, ADHISS 1 = ¥k i)
TBRGESNE, FE/NTT KRB . &5, DA IHT5 2 X 45 (Feedforward Neural Network, FFN) K 2
1 FH 11 58 1 2 2 JB A L (Multilayer Perceptron, MLP)&544, K FH [E] € PGS R . IXFhER A PRFIE A 3 7
=0t 2 REERHER B & RO FERE 77, BRI T P20t B AR SORRHIE 1) FRIA 8% .

BExr BIRJR IR, ASCERW T —FR G BN S A H S N TS 4% HPG-SR. HAZ DA HLE T3/ &
2 Ry SR AT 2 (R 2 e, B TR A L, E R 4% B8 [F] B 2L 4% Transformer (1K 2R B K
WAL I CNN (1Rl mibe i pe 1. BRI S, A& TR A AT 142 & /) (Hybrid Perception
Gated Attention, HPGA), TELREKE O HERJIWIFEIR, AFH AT 1R B 43 3R B Ut f M S A0S
B BT S BT RECLI A B ARG . A, ARSCEM THImM Y, T 2 R 1T
151 W 4% (Multi-Scale Gated FFN, MSG-FFN), F| FH WU AN [F] REE B AR A R ST 13 AL R4 SR E 1) A
gMERE, mfa, RTHPRAFEERE, ACEREELZHTMA T 0 E R R ERE 4 44 (Contrast-
Aware Feature Refinement, CAFR)IE R, | FH A 22t A Sk i A4 v 0T LU B 0B XS (P R AE I 8 o AR ST
EOTER AR

ARSCEEH T — P TIRA BN R EIGE 7 HR M 2% HPG-SR. Z 2870 1 4B SR oK & 1B
JEHES AL S R, il i VRS RN SR =y SO T A R S RSO IR E .

AN T HPGA A1 MSG-FFN. R J AT 70 SO 1 BRI S E R R, e 8L [
VLRSI TR IE AR 4 R AR e R 1 o

ASCHEH T CAFR R, FIFHGe it Rk i s 5 1 9 286 %0 08 =F 5 X oGy B

TERANEMERARAE Rz 050K B, HPG-SR fES B EM TR Y IEN T, MR T 4ui &
JeRE R B SR k. Rl RIESEE 221 Urban100 20854 b, A TR B R B 1 528k 4n 15k =

VAR
2. XIE
2.1. EF CNN R EZRBo R

H SRCNN [11]E Uk SRR 4 I 2% 5] NGO 7 R 34T 25 Aok, IRFEZE S D78 # £ 5 1%
. FHIM) TAE Q] EDSR [2]A1 RCAN [ 38 ot M S % 2 5% 22 HURE 8 = OHLH S 1 L vEae, HIE
RS EEMTHEITE R TER & LEE . AT RRX— R, BRSSO
B

IDN [12]32 715 S 28Ik, i 7 B R B R AR AURS IR R IE R ek TH T o 7R SRS |-, IMDN
[13]3E— 5N TE B2 EAEMM LS, Wi BB I JERAE S T 5 = %0 A . RFDN [14] ] F 5%
ZERFIEZSTRYUUAR 7 IMDN H RIE TE 73 R4, JE— 2D PRAIC TR 55 4% FE . b 4h, LatticeNet [15]F1 LAPAR
[16]%5 7l it 5N f kg s Ze MR R HIE M FE, TERFFRERW RN ST T HER R

R FIRFET CNN B E R BT RS T B3, (SRR A 1) 535082 B BR 1] 1 M
SRR EE ARG BRe /1, (EAEWKE BAA KPR B 08t 1) 3= 52 SOR T A7 72 R PR
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2.2. ETF Transformer HIE1GEB 5 #HE

WTAEK, Transformer FEAHHBEOR 1 42 R AL AR ) £E THEN A USRIt BRI /9[17]. 1IPT [6]H
0K Transformer N T ZMOATESS, (HH T ZEEHIR T HONZ B E&E K. SwinlR [7]8)H
# Swin Transformer [IFSH7 7 VER AHLHIGIN SR, #EMERE B KIEIE 73T CNN (73, WE T3k
Je Bl S 6 ) B M

N TP AT R R ISR R E R s, JESIL T 2R 7 % . ESRT [18 4§ FH & 2L
Transformer FI¥# &4 CNN VR G 2L SR FEARPIAF & o ELAN [9]3@ H T — 4 A K BE BV E =TI M 45,
IR A AR S B T R AR . SRFormer [10]MI42 HY 7 —Fh & ¥ (132 0UH], @i k4658
T8 B 4 ) 2 2R AE B0 K B TN TH B R T, TPl 1R B 0

SR, A ) Transformer 2877 V238 % THI I 5 L A (0 BRAR . B VR B IH LA A R I H (@ SRR 1k
Ko EE B MeAh, ST B SRR TR FH (I8 TE 4 SO R NS, T AR IR R 1Y) S (R
gk, FEURMMNSERER . WHATE— AN — RHESE P [ B S0 e 240 4 S SR ATURS 248 1) JR) 70 v At
WAL, AT — AR A R ) R

23. RARASIHENS

N T 4GB Transformer FIRH, TRAJEMEWIZ 206 . — L TAEZ2AFE Transformer
FHATEHRATIAGRE, UANERESEMmE . #lW, ACMix [194RER T BHFE E IR ERR L B
FAME. SR, BB RS ERIEUY .

7, TIEHUEIE A —MEh SRR £ T B, EERMREJE PRI B KW /1. NAFNet [20]1E ]
T R SRk T s B R AR R G R A, T DL ST R R ORI TR RE . TR o
W2 R4 L SCfE B B & RO R S B, X T BN RS I ERRRE N E L, 2R R, A
i FEH HPGA Al MSG-FEN, B fEilid B &S 2 R0 KR a MR Bdp 13z, kI gs
2% Transformer 7E =4 TR E FRIAZE .

3. A&
3.1, BFEEl

Slmng-Fééfure
A”,_A<»~"'Ex1:racti011

(a) Hybrid Perception Group (HPG) (b) Hybrid Perception Layer (HPL)

Figure 1. The overall architecture of the proposed HPG-SR. (a) The deep feature extraction stage is composed of N stacked
Hybrid Perception Groups (HPG); (b) Each HPG contains multiple Hybrid Perception Layers (HPL), where each HPL consists
of an HPGA module and an MSG-FFN module

Bl 1. ASCHEH ) HPG-SR BRI . (a) PRRFHESRIH N MR A BAAMHPGHEE TN (b) B HPG &
TR A EHZ(MHPL), 4> HPL B HPGA Fl MSG-FFN BiHe2H ik
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HPG-SR B {EA > e R HL BERE RS ARV &2 e S0t 35 AR B B 70 PR e b 2 o &) 1 o, s e
TOE =B B HRRHIERE RZ RS IO R B
X4 AR RN 1 e RTT G B SAEH A 3x3 BAUR H, () KA BB WU BURAE
W], R F
E)ZHSF(ILR) (1)

Hrp R, e R, CNRHIEEIESL .

BE), F, OB NIRJZRFESR U ER H ), () o 2B H N A HES (R & B 4 (Hybrid Perception
Group, HPG)ZH /. W1l 1(a)fi7R, A~ HPG & # T/MEA & A1 JZ (Hybrid Perception Layer, HPL), 14|
1(b)FT7R, A4 HPL H1—/> HPGA B Al—/~ MSG-FFN BEHA . IR Z RIS F, B8 T+
B ETXER.

N T D S SRR AR T SO R A B, AR SCAE TR JE SRR SR U S5 A8 A TR B R SR R AR A 2 A AR B
H oy () > JRIERE 4 R 22 il 5 VR JE AL -

Fref =H (FDF +E)) 2

e, R RHE F,, 8 A8 ERFRIEAMEIRR M EEER A, (1) BB &R HR
T

ISR :HRcc (Ee[) (3)
3.2. RARBMINEEESD

PRAEFIE 1 EER ) BT R, HERZ B D5 8. SRFormer [10]42 H A B #e HiEE N
A I 3 T 4 R [ AR T RS2, HASCOWER R, XF K, VR R A A E R RIR TR AR
AWML R R, FERMSELE RN E K. N, AR T HPGA, 3 47 X050 3454 R4l
PR BE B HOMURT =) 3 S A 55 o a0 B 2 o, HPGA 2 4 Ry B 873 SORN R B IR0 23 SCPIAS 23 SC AL il
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Figure 2. Structure of the Hybrid Perception Gated Attention (HPGA) module
B 2. BRE A TR I(HPGARIRE Y

MERMARE X e RO, WK ERNIFESE L. 7 RIHEE, A SCRAZMEEGEE 2%
B (Key) FH{E(Value) 38 8 4 52 146 4 SR K (1 % (FEARLI TR B EAHL R=2), JFETMYEE
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EHHTEHGRIE DY KRR, 20, K, vV aslRosail. BAERN, 2REETERRN:

Attention(Q,K,V) = Soft ma){QKT +BJV 4)
\/Z
Horh B e R Al 2 3 [ AN A7 B 0 B 5 5((Learnable Relative Position Bias), i T-43k/3 41 Py AR X
EERE, MONERRD. d N T . %3 SR IEN X o
N T AME A Ry 3 SRR 4 RN B 450 B SR R TS 0 %, ARSTIIN T — AN BRI R iR A s 12 . 1%
PRAT AR AE RG22 18] 7 F 2 AR, IR EE W] 43 B & A (Depthwise separable convolution, DSC) K4 HiL )
AR R A AR . R F, (1) R 3x 3 HIBREE W] 7> B G RURAE, JRARRHE X, tT B R
Xigear = Fany (X) (%)

S A FE AR R I B RAS, RIS R Cx3x3 (IR, Befs A o (5 58 UG (10 2 R SU P

B

AN, N T AR AR Y MR Y 2R R AR M sh 3 P A A R AR 35 B, AU T —ANAr 2 2]
PR o o 2 HPGA HIHIH Y0, N:

Yopos :Proj(a-Xg,obal +(1-a)- X,

local)+X (6)
Horb Proj (+) MM, a WIS 0.5 2 HimBlimil 5. XA ITHE4F HPGA BERSAE-T-HH XI5

LK RER, MESHEFE X8 2 A FH R4S .
3.3. ZREIHERIRMS

HI B 2% B D RFAE A AR i 55 AR 2 MR RSt o S0AT AR A0 B 20 I 46530 SR FH MILP (R 454, s (0 o ] e
R AR I B — RUSE A B 5 PR ) 1R AR I S2 BT 2 P, LI R B0 B0 o i = X A A ) e 6 4
% Gated CNN F{JF A, ASCHEH T MSG-FEN 11| 3 Jror, A 2 ROBEG RN TH LR G SRR 2% .

— 1x1 DW-Conv
(Context Gating)

Linear

Expansion

Linear
Projection

—— 3x3 DW-Conv
(Texture Details) =~

Figure 3. Structure of the Multi-Scale Gated Feedforward Network (MSG-FFN)
Bl 3. ZREIHERIRMEMSG-FFN)4Hy

XHFRIARFIE X, MSG-FFN 15 JGifid — MR R R IRIEY It - HI P X, A X, «
[X.X,]= Split(Linear,.n (X)) (7)
FHorp XX, e REIC

Bt J » ASSCAE PN 9332 10 3 N2 AN [R)RUBE BRTR E PT 23 S 6 AR 70 5 1 M8 3% 3 B AR BREHU [R) 401
I3 2 A Ix VERUE N bR S5 B
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Y, = DWConv,; (X)) ®)

Y, = DWConv,, (X,) )

B, ACHIM Hadamard FRSEHLTIHEHLE], A Y, REhAS W] Y] FORHER L, I i it 4k 2
BEATREA -

Fys6 (X) = Linear,, (Y, OY,)+ X (10)

XA AR % 2 RS, R T U A TR SR AR L s s, e A Rothid
TETUARAT 2 IFA% 38 e URFAIE o
3.4. MELERAFFELAL

TERBREEN F R 2 /T, FREE P A REEEE S ARRENEE. FRrEEEE
JIXFIH 4 /P #)it L (Global Average Pooling, GAP)RE &GS B

= X . 11
Zuvg HXWIZZI:/Z:; i,j ( )
SR, GAP 25 5 il U 5 W X, RN TOILIX 40P 308 SRS i a0, R & )

e FA AR R A AMH -

Avg Pooling

Std Pooling

Figure 4. Structure of the Contrast-Aware Feature Refinement (CAFR) module
B 4. % o R AR HE TG (CAFR) BEHR 45

N T RUEE— S, WP 4 FR, CAFR iUl 73 FARm 2 108 . bRl A i R A (e
SSIAAERE bR IR, BIXSEORE . T2 o ANEIE, FUbRE 2GR 2, L T

c 1 L X c c 2
ZW:JH“V;j&&qu)+g (12)
ST 35 A RHE S AR 22 M AR AE AR N, 9 00 L P BN I RFAE R R A 2
Z2=2,,+Zy (13)
WS, FIFHHZE 2 2B EHLA Sigmoid B AU BUETE AL RS w, IFXF IR G RFAE AT SR T :
w=o(MLP(z)) (14)
F,=X-w (15)
CAFR AEH R A5 1 4680 it LU S & 3 SUHE I (96 TE AT 78 RABE Y BRI 26 B

ELE R R

DOI: 10.12677/csa.2026.161002 14 THENUR S 5 R H


https://doi.org/10.12677/csa.2026.161002

B &

3.5. BkEH

9T ORMOFHRI I, ASOR L (R BRRM211. HECT L, i, L, BURAER T b e o
b, BRI PR SRINLG. G M NG (10,10 | sk tE Uy

i=

1 i i
L:H;HHHPG—SR (Iﬁlg)_lﬁll)? (16)

HH H e () BRI,
4. LI
4.1. LR E

N TR REB R AT, AR SCEIR Z AR S 3e philt. IIZRBr BeU A DIV2K i £ (22], B8
800 Tk 2 K A HHE I ZR G o AR MR B, A SCHE FANARAE IR S v 2 A8 B dEA7 VAl - Set5 23]
Set14 [24]. BSD100 [25]. Urban100 [26]F1 Mangal09 [27].

AR SCF 06 AE {7 e L (Peak signal-to-noise ratio, PSNR)F14E #4 A Ll (Structure Similarity Index Measure,
SSIM) [28 [WE N E MV Fa bR . BT FRbrIEFE# 3] YCbCr R 2[5 1 Y JWiE LT 5. shak, A
AR TR ) S8 E MR E FLOPs APFAR AL 1F B2 4% E . FLOPs &2k T 7 e BUR it
1280 720 43 HEE M S He R BRI T R R Sk . SIS LT PyTorch HE42[29], 7E Ubuntu 22.04 #
ERG Figtr, BEEASA &P NVIDIA RTX 4090 GPU. A SCHHR S 7 2R B BEHLE BT 64 % 64 1)
patch TENHIN, FERHBENUIRE MK R AT B g k. (8 Adam AL FR[301IZR AL, S8k E
B =09 F B, =0.99 . HIUEZTREEN2x107, BIERRECH 500,000 VK, 2 > RIEEARUEUE 3%
SE KU AR o A TSR, ASCRA LA R IR R
4.2. EEWE

W 1R, ASCKPEHE) HPG-SR 5 2 R E A2 & SR kT T HA, B4EET CNN 177
7% CARN LL K FEF Transformer 7774 SwinIR-light. ELAN. SRFormer-light.

Table 1. Parameters, FLOPs, PSNR, and SSIM of different SR methods at scales x2, x3, and x4
F 1. AR SR FHEEX2. <3, x4 RETHS%E,. FLOPs. PSNR 1 SSIM

» YT N Set5 Setl4 BSD100 Urban100 Mangal09
A i ZHE FLOPs
B PSNR/SSIM  PSNR/SSIM  PSNR/SSIM  PSNR/SSIM  PSNR/SSIM
CARN x2 1592K  2228G  37.76/0.9590  33.52/0.9166  32.09/0.8978  31.92/0.9256  38.36/0.9765
A’F X2 1363 K 306.1 G 38.09/0.9607  33.78/0.9192  32.23/0.9002  32.46/0.9313  38.95/0.9772

SwinIR-light X2 910 K 2444 G 38.14/0.9611 33.86/0.9206  32.31/0.9012  32.76/0.9340  39.12/0.9783
ELAN-light X2 582 K 1684 G  38.17/0.9611  33.94/0.9207 32.30/0.9012  32.76/0.9340  39.11/0.9782
SRFormer-light %2 853 K 2363 G 38.23/0.9613  33.94/0.9209 32.36/0.9019  32.91/0.9353  39.28/0.9785

A X2 876 K 24377G  38.24/0.9615  33.96/0.9211  32.43/0.9025  33.10/0.9367  39.42/0.9796
CARN X3 1592 K 1188 G 34.29/0.9255  30.29/0.8407  29.06/0.8034  28.06/0.8493  33.50/0.9440
A’F x3 1367 K 136.3 G 34.54/0.9283  30.41/0.8436  29.14/0.8062  28.40/0.8574  33.83/0.9463

SwinIR-light x3 918 K 110.8 G 34.62/0.9289  30.54/0.8463  29.20/0.8082  28.66/0.8624  33.98/0.9478
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ELAN-light ~ x3 590K 757G 34.61/0.9288 30.55/0.8463 29.21/0.8081  28.69/0.8624  34.00/0.9478
SRFormer-light x3 861K  1054G  34.67/0.9296  30.57/0.8469  29.26/0.8099  28.81/0.8655  34.19/0.9489
ES'S x3 881K  117.1G  34.73/0.9304 30.61/0.8477 29.31/0.8115 28.94/0.8670  34.30/0.9503
CARN x4 152K 909G 32.13/0.8937  28.60/0.7806  27.58/0.7349  26.07/0.7837  30.47/0.9084
A’F x4 1374K 772G 32.32/0.8964 28.67/0.7839  27.62/0.7379  26.32/0.7931  30.72/0.9115
SwinIR-light x4 930K  63.6G  3244/0.8976 28.77/0.7858  27.69/0.7406  26.47/0.7980  30.92/0.9151
ELAN-light x4 601K 432G 32.43/0.8975 28.78/0.7858  27.69/0.7406  26.54/0.7982  30.92/0.9150
SRFormer-light x4 873K 62.8G  32.51/0.8988  28.82/0.7872  27.73/0.7422  26.67/0.8032  31.17/0.9165
EN' x4 889K 653G 32.59/0.8997 28.86/0.7884  27.78/0.7435  26.79/0.8038  31.27/0.9181

SKIREREY, ASCH) HPG-SR £ T M EUE SRR B A 4 i R N UG 1 it fe. fER

(5, E i B AR RE I A KB B4 M B R ALY Urban100 #dfi £ £, HPG-SR JEILH T & & 1L

B, 1Ex2 B HERALSH, HPG-SR [ PSNR 13| T 33.10dB, T 551 # SRFormer-light [10]$2 T
PSNR #2717 0.12 dB. X7/ EH T ASCHE H ) HPGA FRER AT CAFR FRETE £

0.19 dB;

UbAh, ARSI ZH B AR B AE 53T Transformer 1) SR B AUAH X I HTHE T, A5 T 2

TE x4 AL55
B e LA 1 3 T A R

REFETT IXFRH] HPG-SR R T HAE R 53 7% P A1 ok e ot B RV A T S 1
4.3. MRREEE

Bicubic CARN

SwinIR-light SRFormer-light

Urban100 (x4): img 008

/ “‘m\\ __\|||||||||||lggumuum

/

il
il

Urban100 (<4): img 011 SRF

Urban100 (x4): img 019 SwinIR-light

SRFormer-light ES's

Figure 5. Visual comparison of x4 super-resolution on Urban100 dataset

[& 5. Urban100 ¥#EE x4 B3 #EERAIM BRI L

& Mk
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T B E R HPG-SR (B, A AR 5 @R T Urban100 4 b x4 #4 HER AL 5
W H 2 R
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