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Abstract

Hyperspectral images (HSIs) consist of hundreds of contiguous narrow spectral bands and contain
rich spectral-spatial information. However, the strong inter-band correlations and complex depen-
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dencies pose challenges for efficiently modeling discriminative spectral features. To address this is-
sue, we propose CAM-HSNet, which aims to enhance the joint modeling of local spectral features and
long-range dependencies while improving parameter efficiency. Specifically, we introduce an im-
proved convolutional modulation module and a convolutional feed-forward network to further en-
code the locally extracted spectral features and to build structures capable of capturing long-range
dependencies and facilitating information interaction. Based on the resulting more discriminative
spectral representations, the model is able to achieve global semantic aggregation with fewer spectral
dimensions, thereby reducing the parameter scale required for local-to-global mapping while main-
taining classification performance. Experimental results demonstrate that, compared with existing
methods, the proposed CAM-HSNet achieves superior performance in overall accuracy (0OA), aver-
age accuracy (AA), and the Kappa coefficient.
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1. 5]

1 6 1% (Hyperspectral Imaging, HST)BEME7E £ H AN 22 H A8 (1061588 F3RBOE 1 A5 S
AMERAE T WA 40T, B S AR G IERAE . IXEeAE BT 1 HSI ZEHA) U] 55 73 8 B 5
HIFIBIEE ST, AL HST 7328 CLRON R I U 1) B BT 7T 7 ) HSTAER P B & [ 1], FeaARk 2], HBE
W3] M I[A]S AT HT[51CL S ARAE DD IR Al 556155 77 1 e L L T Rl ) 82 FH AT 5t SR77, HST Y
B IEAN A B 5] N T K EITUARE R, I35 Hughes UM [7], IXAEIRKRFRRE _LHIZ) T4 5550 K28 1)
PERE[8]-[11].

GG = AE IS RHIE TUAR 5 Hughes RO AT 73 RVERERIHI LY, f£48 77150 PCA [12]. ICA[13]F1 LDA
[14]-[16]JHIL LB AR B BAERE , (EXECUH P R A I IS RIRE 22 2] Lo ERT (17
[18]. CNN FIIF — 4 5 BB BOGIERAIE] 19150 4t/ = 4E B AU FORI - 251815 B [20]-[24], HIEEKIEES
R AR IRARLRE S5 FR[25] [26] - Transformer JH it H v &y AL B @A K B S AKHi[27], 40 SpectralFormer
[28]H1 SSFTT [29], (HAFFETHE AT S SRZ RFIHNmE . X KB AROBoE . I ZRiiA K HA 5
LA (EfHERE I, EURASUE I Transformer XA BN, @I KAZER . RE W55
B BT 15 2% (ConvFFN)AE R 51 BE B A B US4, TE R T VR 2R T59[30]-[34], FTELA
DGR AE A SR A IS

AR A2S2K-ResNe [241/F N BEAIBERY, 2% f& B2 A AL 1K) B RRAE S DUBE H R i iod Jay 350 45 AR
HRAR I Bt o, JFIE I 2R VE eI IX S8 Joy SR B G oA R SR R TR . AR, A I ok B K B A4
A NG TE AL A F AR AN A T5 AT AE AN AL o UL, 76 JR) B4R IE 280 4 Jmy 4 ALE B0 2R M R 55 1T 51N Transformer
WAL, DI R B AEREAT 13— P UR BE AR, AT 9 i 1 G R AE B IR 3R T 7 etk e . Ak
Rl , DR B FOAY LA 't W R AL SR BB B AEAT Jy G B AR AE R B, T J5 ) B B S A B B Ui
(Adaptive Convolutional Overlap Patch Embedding, ACPE), 2% il it 8 & 1 3 & 77 3 5 RR AE 32 OB B
(LAM), B} ConvFFN F13& 1 1f il & (Convolutional Modulation Module, CMM)X J&3 3 Y e RRAIE i3E— 25 S A,

ik
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I N 7P SR ST, o A 2 MR SeB 1 4 R R AR . A SCH TR T ZEAARBLAE DA

VAR
Lo JRATR T — Mol s A E B PO, HT SEEURR ARG SR AR B OGTE S DR SR SR BURFIE R
ILRES

2. FAHRM T — MR R A G SRR SR U SR, G e 4 R AR AL AT R D IR A,
T 53 e B O TR R SR T 7 SR RE

3. PR S SRR SR T T RHIER R BE Sy, IFE = AN FEEMERER (RN TP KSC M1 UP) B A HIA BRI
YIZRREAS SEEL 1 RSB 3E (1 70 SR 2

2. XIE
2.1. ERMEMLE

CNN R J5 5Bz I S B L R i, 78 HST 202 R Il 7 B3 . Hu 5[ 195 F R H — 446
FAME B IEHOLIERFIE, (BRRER D FIHZEEE R . FLm e t, 258X 40 2 58 2 ¢ H#[35],
SRIM, BN &4 HSI B A 4G 2 S8 HEd ok, msnid & KK [36]. Fik, 277
PR AT ORISR e, TR 4R R g B S (R RFAE[37] [38]. HE—2D MR SR ALE & S ik
2% DPyResNet [22]. =4EH AL ML%5[39] [40], EANTREUEEAFIFEE _EHETF Ol it —25 [ RS AE 11 5L At
73, JeH R =G AR 4 W 45 e B8 76 0 75 AL B I 5 100 T B IR BO RS - 25 E & R AE . 7E UL Rl 1,
WA T 2R dt ik, B in s T5R 2 5 S B 61 - Rk ZE M 4% SSRN [41]. £ ] = 4R &
LRI M 4 MS-3DNet [23] A REEAS 8] - Jeil B R SCE B TR AE SR EL A M 2% ContextNet [20]+
FIFH AR JR) BB R AR 3R K AR T 05 B 4% ENL-FCN [2170A K 3593 7 7 1 1 3 S 't 4 i) 4% e 4t 7k
ZE M 4% A2S2K-ResNet [24]. JRE W, CNN SR ELERE A FRE, 51 gz B A R . i B 4om a1 g
JIAE[25] [26].

2.2. Transformer X ERMLZ

AR, BURSUHEGI T —2 5]\ Transformer Wi E S GRS, Eid K GROUHZIRERT
SRR RESZEY, R VG A 8] R S BT R, R PR S 1T SRR . 3k
W 2% 38 1 454 ConvFFN 55k 72454, it 2 2 HES IR E 2 m b s WA BAE R, AT 2 35 4 T I 45 (1)
KiLge 1 5izvERe, HFRN Transformer KA BN L . AR AFE ConvNeXt [30], HEETHRZEHE
B N KAZ IR E ] 73 B A8 B3R 432K Transformer 4 R IERE /5 FastViT [31]38id 2 RE token VR & HE T4
Ja B R CERIE s VAN 3218 H T AR TE K A% 6 AR i S X 3 Ak #i; Conv2Former [33 @A %15 Transformer
FERFRE A G5 SR —4s JR P R 8, FocalNet [34 M3 i £ p S AE R A 70 SR A R e B
M. R IR SRR BT S T BURAT S5, HES BT HE AR 5 5t B VR I T L s K PR
B, ymotiEaiE 4 R R R T R K

3. MIgEEH

wlE 1 AR, ARCIE A2S2K-ResNet H2EE XS SRS ER B B &5 Mt AT 1 oadk, w20 AR
He: (1) ACPE; (2) LAM.
3.1. BREREW

AT FE R FH At B4 2 HE Bk 22 B W) SR R A FR BN = 6 18 MG R 6 5 B AR AE . BRZE BRI 4544
WE 2 Bix, 435 Initial-ResBlock. Middle-ResBlock I Final-ResBlock =%, fFAMkZEHH 3D HBH
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(Conv3D). #tIH—fL(BN)FI ReLU WG BRE AL, FFEIHR NG WAF 187 & Ji(effective channel attention,
ECA) [42]. ECA i JR) i 5 18 18 A2 H e A5K IR Bl i [A) (AR Ze MR, AT S FHRFIE R IR B ) 55 4 bk
REo FEASCIEEARHELE R (LI 1), FRZEBRIEE M 5 AL B I ORFF S FERIZE 0 — B AT MR ZE S 2 A 57
HERERFAESE A, JE AR ZE T TS (B AH O, HERZER AW 2 Fros. RN &R Z &L
FCE N 1 fos.
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Figure 1. Overview of the CAM-HSNet framework
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Figure 2. The structure of the residual blocks
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Table 1. Parameters of the convolution kernel in each residual block

F 1. BERERNERLSH

ResBlock Kernels Kernels Shapes
Initial-ResBlock 24 (1,1,7)
Middle-ResBlock 24 (1,1,7)
Middle-ResBlock 24 (3,3,1)
Final-ResBlock 24 (3,3.1)

3.2. LAM

LAM Hi CMM 5 ConvFFN Z5#2H B, I 6 R4 BE ) B 3G N @ B LR R . PR R
SEARFIERIARE )1, HAE RGNS BER M, NEMREN S B RS M@ T ¥R
He, CMM BG4 F RS, H B YR mIRCE , 3 ST 2 5 N AR AT B R
BOARE, SRR N AFAE B R IR AREAE 3G 5 AR B PR DG, RN A B WL D)8 . Ti7E ConvFFN 44
Hedr, R EAE S5 bR I RT3 X 4% (Feed-Forward Network, FEN)AHSE &, 15 WX 48 78 3 105 J53 38 4% [ RFAE 1) 7]
BF, iR SCHLE R AR A RE JT . B AE FEN R NERZ, BEHRE OS5 38 55 A% (1 e B = [A)AH ELAR
F 5 BESRAR AN )RR AIE Y 2 05 R

3.2.1. CMM

NTESETHRRAE P B8 D R ERFF S5 G0 — 1, ABFFETE Conv2Former FIAGFIVE H MARKEAE I, 454
FastViT H1[#) ConvFFN £5#4, it T —Fhd SR R HIBLEL CMM. ZAELEL B 7618 i 6 AR B E SR BO
YN B SUE R, HRRIE FEN BB KR M A RE 7T, AR EE RO HIRCE, XA RE T B &
MBS Wl 1 iR, A BINERIE x 520" CMM 14 46 i 1% 38 1 45 A7 (Depthwise Convolution,
DW)IREURH L N B R, B AL —1b(Batch Normalization, BN) PARR B RS AE 4, 53 A2k
PR AN — N AELR VR OE B3, T IEIE Y AR, SEIUKE B SO BB R IR, R B
WA I B FROR B0 AT A, AR A R AR R 15 P SO TE D R AT 20 o), TR AN EAE PR 1l 7E (—1,1) Y
Wo HZ, WHIBCEMERH THNRHE, SCHLEENE R, i e 2 E R AR RF R AE — S50 506 L i,
IR, TR NEEARTE LR AR R R AR e 1, 38 S 23 S rp i BE 2 2% 10 45 R /R I R Bk 32
TR, FRATIFE 3 S S 3 TR A A 5N AT ) I AR BCR L s LA IS RO 4 SCRFAE 1 5T

fik. RO
M = BN (DW (X)) M
W = Conv,,, (O‘(Conlem (M))) @
W = tanh (W) %)
X'=X0o(1+Woy) )
KPP AMUAELE R 15 ConvFFN £REE— 2, I fl & T Conv2Former 127445 AR 1 i AR FFN
el A RE 7]

3.2.2. ConvFFN
N T AECRAE &3 25 AV REAE SRR D AT ER ™, [RII CRAF R 80 5, AR5 N\ ConvFFN. AR}
FEN 3T T BFULSUE, BB EARE SR ERB LT, AA0RRE LT UEE . HER S
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Rk, HATDEANRZ IS HEKEIL T, SR BEEE . WA 1R, SRR X2 E
2t —A> DW DUHRBURFZ A BN SUE R BEE i BN DS E RAE A, B Al 2 1A 4 )2
AN ARLMERE R A, I IEEY R, SCBUH DR B R SCE BRI, 3595 1 280 B s
AR RE 17, $36 D DRAIERE BE U IE 5 R AL — Bk, R N % Z IR 1 3R 22 1 4%, [,
XS 73 SEFINTT 27 2] (R IE AR TR R s DRIFINZRAASE M, DLRCRE S 73 32 rhied B2 52 2% (R 5 A 7 L 511 25
B Bos TG T AR R R

Y = BN (DW (X)) ®)
Y =Conv,,, (G(COHV]XM (Y))) (6)
Z=X+YOy (7

3.3. ACPE

BUA G AR B R NI AR S AR — AL, PR AN RHIE (1 B S M B RE A IR 9 138

SR A L R BB B IE N RE SRR RIA VT, BAEB R E BHIRAZATIIA T CMM, @ XA

FEAEREAT YR, SIS AR GRATIE RO, 5 S A B B U N RESE SRAT BN F AT AT R R

me BAHL, WE TR, BIARHEE 2L CMM AT, SRS TSR BN HEATBUR N . B0
AFETE TRANFHAEIRIARES), AT DUICAER S EIIA G RR 4. BT RE N &R

Y = BN (Conv(CMM (X)) )

3.4. BB
SR, AR PO S SRR R B e
L(y.3)= 21, v log(5) ©)
Foob oy R RSEARAE,  § TS, C % HS bt o 5 A
4. XBEZERHH
4.1. LR E

TEARCH, AT EAESE 1P KSC A1 UP #HT 1/ 2K5L8. #3195 AT IR 5 2] J77% Con-
textNet [20]« SSRN [41]. MS-3DNet [23]. DPyResNet[22]. A2S2K-ResNet [24]F1 ENL-FCN [21]3#47 T Lt

B

4.1.1. BXERGBIES

AHIE TS 1 = i s SR aE Ak T & B ARIB S 2 A4 5, %S Indian Pines (IP). Pavia
University (UP). Kennedy Space Center (KSC). [P £#58RETEEEIEE 29N RIIX, H AVIRIS {4/
FIRHL, TR 145 < 145 153, REEZ) 200 MHEREREL, A8 16 ERIEV KB, R
WA AR BT ASP AR . UP BOE Ak B BOCRIIAZE TR 242 el X3, R ROSIS f&/&235, =% H]
JU5F 610 %340 183, TREE 103 MGkt By, eI 2 My, s, @sAEeg, 3o 3, H
Iy AT - KSC HUHARAE 1 AVIRIS 288 75 32 [E k' LB M Je i K0 B R, SRR 512
x 614153, B 176 MEROGIEEE, HMAER T BARZEN, W@, M LR E 13 28, XK
Sl o3 A ARG 8T HLG T X 3 BE o . ARTTT IR SR AR AR AR U B . R R b B A s
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B3, NECIE G o A RGP AL T 2 R H B P s 56 v
T2V T AL, TR, BdE ST R EG S EIE R Z. M IP. KSC
1 UP 4 £E 73 BIFREL 9 x 9 x 200, 9 x 9 x 176 19 x 9 x 103 [I=4EH, HARFHITHYE.

Table 2. Summary of the characteristics of the IP, UP, and KSC datasets
= 2.1P, KSC 5 UP HBREHHEL S

Datasets
Description
1P UP KSC
Sensor AVIRIS ROSIS AVIRIS
Spatial Dimension 145%145 610x340 512x614
Spectral Bands 200 103 176
Land-cover 16 9 13
Total sample pixels 10249 42776 5202

4.1.2. TLIgHR

A THVEAL HSE 70 AR RIVERE, AT 58 R FH G 40K & (Overall Accuracy, OA). ~FIIF % (Average Ac-
curacy, AA)F1 Kappa REL—F1E45R[43]. HH, OA S BYN Fr G FEAR I RAR 2508 77, B IR 2> 258
A RFEAR LA, EER = 3 P BEAR TN BUSE AR AR AT . AA TNE I THE S SN HER 2 P AME, R
WO R FEAN R 2R ) BRI, T80 D B EAE - 8 2R (W 2 . Kappa R — D58 T RN R
PR R — 8, HEUETCEDA-1 2 1, BESEGE | RoRBIR w5 FSehn % m B —2 L OA
B PR M UPAL 40 KRR . SRE M HIX IR AR, T ANEEAARE B S0 3501 1 B BEATL — B0 = A BE AR
RVEREHEAT 21 . ATEERIVRAN .
4.1.3. SEIGUMTS

T BRI VRN LR A, BRATEH 75 A2S2K-ResNe TR [AI R SZE6G 0 B . Adam [44]#% 1K
AL A ) 240 AEYIZRIT, G5 epoch 2 E A 200, #HER/NK 320 A —AN A SRR (45K 5
it 1% el IR B IR = 2 oI 2, R JE IR AR ) R R IR E . XSRS
B TR S o e 8, el LA . Ak, — HARBIE M 212, 0l FH AR KR O B 2k R g
MEARERE TS 200 4> epoch (52213 . BEASLIGE T 5 IR, 231132 OA. AA. Al Kappa FI3IE bR HE
Zo ), OA. AA. M Kappa DA% + PrifEZRoR. 7EIRATHISES S, F1 A2S2K-ResNe MY Il 25—
B, A FEARBEBENLIN S N INZREE SRR AR, H A I ZR 8 AR UE AL & 5 AR 10%, HAR 80%
TIPS . Frf SERIATERC % 24 GB A7 NVIDIA RTX 3090 GPU 4T, SEIREWI~#R, #3
CRT =AM HIEELRRERR.

Table 3. Experimental settings
=3 XRRERER

Parameter/Datasets IP UP KSC
Total Samples 10,249 42,776 5202
Train/Val/Test 1018/1018/8213 4273/4273/34230 516/516/4179

Best LR 3.6e-4 3e-4 le-4
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Bk
Optimizer Adam
Epochs 200
Batch Size 32
Learning Rate Strategy One Cycle Policy + Cosine Annealing
Runs 5
Metrics OA, AA, Kappa (mean = std)

4.1.4. BEDHERE
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Figure 3. OA achieved under different contextual field sizes on the IP, UP, and KSC datasets
3. f£ 1P, UP #1KSC #H#E&E L, TR ETXME X NEZFHTIRIGH OA

W TR TR ARG BN SCE R, BATR 6 7 M) R SO MR S 5L IR
TR OB AT SR o JE L AT YR R AR IR BT L, AT T ARG HE R SO RHE SR
AN FNERERITENT . 2SI AU B T 30E SR RIPAl A6 B SCHIEF RN, TR th AT R s i A A
AR B _EXEIE SRR T i 3 BoR, UP BRARAE BN SCHLEF N 11’ EE e, T IP
KSC HaRAEAET Jy 5 RIS o JRRAET UP (Gl 4E L= SRR AR 5, LAM /i MO K B
SCRASE 5 FIIRE ST 5 100 1P 5 KSC R AR R EAE B F 5, LAM S0 5= SRR SR . 5 245 2
SE R AT EWE R LR CE OAON 5, B EERAHR A SLPROG I 4E R bR SCULET
id 20, MTIAMLSEEL 7 HERHLET TR, (R g o RN GG B AR AE 7T

4.2. MRAGERE 1

BAHE TP UP 1 KSC #¥m4E E ARG VAL 1 % J7751E OA. AA 1 Kappa fabr ERIERIL, Fxf o545
FRAT 7O T . SIS IR EOR, FrEE B = AN S R IR A R 7 TP SR AE A
BORALTTE 3R T 0.32 1,15 A10.35; 78 UP _E4&7F 0.10. 0.09 #10.12; 7E KSC 427} 0.22. 0.27 #
0.24. 3 REHE—BRY, ARI7VEAE S 8] — BOE R A 0 SRR T T TIUE A 28 b, @R
B G RAAE 25 A bR SO 1 SRS CE A [ B 3 e b R AR E R H, A 23 T mouib EE o
KPR, EMERNE 4. £ 5. £6, HEEMAE 4. E5FE 6 fir,
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Table 4. OA, AA, and Kappa on the IP dataset with 10% of the samples used for training
4. 7 1P BUIRE EIER 10%H K MEANZKEFIRTS OA. AA 71 Kappa (&

Class ContextNet [20] MS-3DNet[23] ENL-FCN[21] DPyResNet[22]  SSRN[41]  A2S2K-ResNet[24] CAM-HSNet
1 88.78 +£0.080 66.67 £0.471 97.56 + 0.000 94.59 +£0.076 57.78 £0.423 97.56 + 0.034 98.47+£2.014
2 98.19 £0.005 75.94 £0.080 93.15 £0.000 93.83 £0.040 98.37£0.012 98.62 £0.010 98.85 + 0.147
3 95.37 £0.028 81.39 £0.007 97.59 £ 0.000 89.30 £0.003 97.47 £0.010 98.58 £0.006 99.23 +0.636
4 97.04 £0.021 88.63 £0.063 91.55 +£0.000 93.51 £0.055 99.12 + 0.0099 98.29 +£0.014 98.51 £1.116
5 97.78 £0.015 95.61 £0.054 97.47 £0.000 99.26 + 0.004 97.79 £0.013 99.02 +0.003 96.91 +£1.726
6 98.60 + 0.008 96.78 £ 0.026 99.24 £+ 0.000 98.52 +0.007 98.50 +£0.010 98.71 £0.010 99.45 + 0. 257
7 90.35+0.098  100.00 = 0.000 100.00 + 0.000 83.08 £0.178 66.67 +£0.471 93.10 + 0.097 86.54 +£8.661
8 97.76 +0.026 89.51 £0.091 97.44 + 0.000 97.63 £0.022 96.45 £ 0.029 98.83 +£0.016 100.00 + 0.000
9 86.90 = 0.102 66.67 £0.471 72.22 +0.000 66.66 +0.471 56.25 +£0.418 74.26 £ 0.038 95.95 + 3.355
10 96.08 £0.018 87.41 £0.070 94.74 + 0.000 93.77 +£0.029 98.33 £ 0.009 98.21 £0.016 98.27 £1.132
11 97.35 £ 0.004 76.69 + 0.096 95.61 +0.000 89.78 £ 0.040 99.08 £ 0.005 99.09 £ 0.001 99.62 +0.262
12 94.00 £ 0.012 88.65 +0.036 97.00 + 0.000 83.43 £0.107 98.46 + 0.009 98.37 £0.013 97.29 +1.980
13 95.01 +£0.03 99.78 + 0.003 97.83 £ 0.000 98.19 £0.021 100.00 + 0.000 99.80 + 0.002 99.17 £0.791
14 98.49 +£0.014 90.06 + 0.087 99.12 +0.000 96.00 £+ 0.021 98.63 £0.010 99.22 +0.007 99.73 +£0.218
15 94.10 £ 0.031 88.21 +£0.044 92.80 + 0.000 91.22 £0.040 99.24 £ 0.005 97.86 £0.013 98.96 +1.308
16 93.57 £ 0.046 98.53 £0.021  100.00 £ 0.000 70.90 + 0.388 95.63 £ 0.062 95.93 +0.057 96.85 +1.033
OA 96.98 + 0.006 83.44 + 0.060 96.15 +0.054 91.47 £0.029 98.38 £ 0.004 98.66 + 0.004 98.98 + 0.241
AA 94.96 + 0.003 86.91 £ 0.084 95.21 £0.028 94.14 + 0.006 91.11 £0.080 96.59 + 0.003 97.74 £ 0.637
Kappa 0.9655+0.007 0.8082+0.070 0.9560+0.030  0.9020 +0.034  0.9815 £ 0.005 0.9848 £ 0.005 98.83 £0.275
Table 5. OA, AA, and Kappa on the UP dataset with 10% of the samples used for training
5. £ UP BHEE LIEA 10% R EAIIGEMIRSHI OA. AA 71 Kappa &
Class ContextNet [20] [31] MS-3DNet [23] ENL-FCN [21] DPyResNet[22] SSRN[41]  A2S2K-Reset[24] CAM-HSNet
1 99.56 + 0.002 99.36 +0.001 99.98 + 0.000 98.35+0.017  99.85+0.001 99.91 £+ 0.000 99.96 + 0.007
2 99.85 £ 0.002 99.80 + 0.000 100.00 + 0.000 98.76 £0.008  99.98 + 0.000 99.99 £ 0.000 99.99 £ 0.005
3 99.19 £ 0.001 98.02 +0.017 99.68 + 0.000 9422 +£0.034  99.68 +0.003 99.88 + 0.001 99.54 +£0.282
4 99.80 + 0.002 99.71 £ 0.001 98.94 + 0.000 99.20 £0.005  99.92 +0.001 99.95 + 0.001 99.90 + 0.091
5 99.91 £ 0.001 99.94 + 0.000 100.00 £0.000  99.72+£0.003  99.94 + 0.000 100.00 = 0.00  100.00 = 0.000
6 99.75 £ 0.003 99.43 +0.003 99.87 + 0.000 98.52+0.006  99.95+0.001 99.91 £ 0.001 99.93 +0.130
7 98.37 £0.022 99.18 + 0.005 100.00 £ 0.000 97.37£0.004 100.00 £0.000 100.00 = 0.000 99.87 +£0.164
8 98.48 £ 0.008 97.13 £ 0.005 99.69 +0.000 84.51 +£0.071  98.28 £0.015 98.88 + 0.006 99.95 £ 0.051
9 99.26 + 0.005 99.74 £ 0.002 100.00 + 0.000 99.60 +£0.001  99.39 +0.003 99.78 £ 0.003 99.95 + 0.064
OA 99.57 £0.001 99.35 £ 0.001 99.76 + 0.002 97.05+0.010  99.77 £0.001 99.85 +0.001 99.95 +0.013
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AA 99.35 £ 0.002 99.15 £ 0.002 99.70 £ 0.002 96.69 £0.006  99.66 +0.001 99.81 £0.001 99.90 +0.032
Kappa 0.9943 +0.001 0.9913+£0.002 0.9972+£0.001 0.9608 £ 0.013 0.9969 + 0.001 99.81 £0.001 99.93 £0.017
Table 6. OA, AA, and Kappa on the KSC dataset with 10% of the samples used for training
% 6. 7E KSC HHRE LER 10%F A1EANIZERIRTHI OA AA 0 Kappa {&
Class  ContextNet [20] MS-3DNet[23] ENL-FCN[21] DPyResNet[22] SSRN[41]  A2S2K-ResNet[24] CAM-HSNet
1 99.78 £ 0.001 96.42 + 0.009 99.71 £ 0.000 99.06 £0.010  99.95+0.001 99.95 £0.001 100.00 + 0.000
2 98.79 £0.014 95.88+£0.012  100.00+0.000  89.72+0.026  100.00 + 0.00 98.68 £0.019 97.02 £ 3.866
3 82.83 +£0.047 80.12+0.168  100.00+0.000  81.84+0.074  99.66 +0.005 98.72 £0.012 98.54 +£1.345
4 78.41 £0.165 90.06 £ 0.012 98.67 £ 0.000 89.83 +£0.040 91.22 +£0.047 94.27 £ 0.042 99.59 +0.604
5 74.22 +0.097 85.86 +0.034 98.61 +0.000 88.34 £ 0.095 100.00 = 0.00 94.46 + 0.050 95.37 £2.924
6 92.64 +0.050 85.61 +0.030 100.00 £ 0.000 88.54+0.138  98.45+0.022 99.82 +0.003 98.64 + 1.666
7 94.40 £ 0.037 90.75+0.088  100.00+0.000  100.00+0.00  95.42 +0.050 99.61 £ 0.005 99.75 £ 0.494
8 97.49 £ 0.009 98.99 £0.008  100.00+0.000  94.81 +£0.037  99.80 +0.003 100.00 + 0.000 100.00 = 0.000
9 99.92 £ 0.001 97.44+£0.028  100.00+£0.000  99.06 +0.002  100.00 = 0.000 100.00 £ 0.000  100.00 = 0.000
10 100.00 = 0.000 98.78 £0.013 100.00 = 0.000 99.46 +£0.004 100.00 + 0.000 100.00 £ 0.000 100.00 + 0.000
11 99.90 £ 0.001 98.67 £0.013 100.00 = 0.000 99.90 +£0.001  100.00 + 0.000 100.00 £ 0.000 100.00 + 0.000
12 99.17 £ 0.006 99.06 + 0.005 100.00 = 0.000 94.42 +0.056  100.00 + 0.000 100.00 £ 0.000 100.00 + 0.000
13 99.96 £ 0.001 100.00 +0.000  100.00 +0.000  99.96 +0.001  100.00 + 0.000 100.00 + 0.000 100.00 £ 0.000
OA 96.34+0.014 95.61 £0.019  99.25+0.020 95.61 £0.019  99.29 +0.004 99.34 +0.0008 99.56 £0.184
AA 93.65 £ 0.026 93.66 + 0.023 98.77 £0.021 94.22 +£0.024  98.80 +0.008 98.88 £ 0.0018 99.15+£0.345
Kappa  0.9593 £ 0.016 0.9511+0.021 0.9913+0.018 0.9511+£0.021 0.9921 +0.004 0.9927 £0.001 99.51 £0.205
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Figure 4. Classification results on the IP dataset. (a) False-color composite image; (b) Ground-truth labels; (¢)~(i) Maps gen-
erated by ContextNet, MS-3DNet, DPyResNet, ENL-FCN, SSRN, A2S2K-ResNet and CAM-HSNet approach; (j) Color ref-
erence
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Figure 5. Classification results on the UP dataset. (a) False-color composite image; (b) Ground-truth labels; (c)~(i) Maps
generated by ContextNet, MS-3DNet, DPyResNet, ENL-FCN, SSRN, A2S2K-ResNet and CAM-HSNet; (j) Color reference
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Figure 6. Classification results on the KSC dataset. (a) False-color composite image; (b) Ground-truth labels; (c)~(i) Maps
generated by ContextNet, MS-3DNet, DPyResNet, ENL-FCN, SSRN, A2S2K-ResNet and CAM-HSNet; (j) Color reference
[& 6. KSC #iz&E 7 KE. () B EERER, (b) EXRIEE, (o)~(1) 5 AIHE ContextNet, MS-3DNet\ DPyResNet,
ENL-FCN, SSRN, A2S2K-ResNet I & CAM-HSNet B0 BV HKE, () BiEIRE
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2: {F Setting 1 f{EAE 5] N CMM, PSS Hir FLAE 61 2 B R IF A K 200 340 3 BE 042 T 5 TR ik 3)
Setting 3: 1F Setting 2 FI3EAH_Fik— 5N LAM e,  DLER 7t F A8 8500 3 6 132 07 TH i DTk

S LEREIR, PR AR OA. AA 5 Kappa REISE T, X —I R KM, HRLE R AR 2
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Table 7. Ablation experiments of the proposed CAM-HSNet on the UP dataset
= 7. FiRH CAM-HSNet 7£ UP #iE & _ERIEHGHRI SIS

metrics
CASE
OA (%) AA (%) Kappa (%)
1 99.886 +0.130 99.822 +0.180 99.849 +£0.171
2 99.904 + 0.099 99.857+0.114 99.872 +£0.132
3 99.951 £0.013 99.904 +0.032 99.935+0.017

4.4. HHERAMAEER S

BAVHE 20537 1 Frde 77k [R5 A FE AN (R S L . DL TP 4R M, <& 8 %1l T CAM-HSNet
L5 SSRN. A2S2K-ResNet 7£ OA. Kappa. ZAAE . 1% 5518 5 E(FLOPs) LA HEHR I [R) 2% 7 T 1) bl &%
SEAGLE LR, AT A2S2K-ResNet (et 8Y , @i Ak R 38 21 A SR RFIE LT, 7ERRRSEE 1 R
LT AR kR . P ST, (RIS RIS R FE A B, RS T AR R e A
B, H R BTTIRAE TR AL TE ORI B AR B BE B, AITTHR T 14524 1K) OA I Kappa. [FJINf, #5747
GPU L BA7 15 FA SRR RN A R %, A JE SRR SRR 5 BRI Ak 5 T IR TSt T ¥ E T 1)

Table 8. Comparison of complexity and performance of different methods on the IP dataset

F 8. NEHEE IP BIRE EMERE SMRELLIL

Model SSRN A2S2K-ResNet CAM-HSNet (ours)
Params 364.1K 370.7K 257.2K
GPU Memory (MB) 11.34 14.98 14.58
OA (%) 98.38 £ 0.004 98.66 + 0.004 98.98 +0.241
Kappa 0.9815 £ 0.005 0.9848 +0.005 98.83 £0.275
Flops (MFLOPs) 311.59 335.93 471.08
Inferrence Time 0.89s 1.19s 1.87s
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