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摘  要 

高光谱图像(HSI)由数百个连续窄带组成，具有丰富的光谱–空间信息。然而，波段间高度相关性与复杂

依赖关系使得判别性光谱特征的高效建模仍具有挑战。为此，本文提出CAM-HSNet，旨在增强光谱局部特

征与长距离依赖的联合建模能力的同时提升参数利用效率。具体而言，我们引入改进的卷积调制模块和卷

积前馈网络，对卷积提取的局部光谱特征进行进一步编码，并构建能够捕获长距离依赖并实现信息交互的

结构。在获得更具判别力的光谱表征基础上，模型能够以更少的谱维表示完成全局语义汇聚，从而压缩原

有局部至全局映射的参数规模，实现参数减少且保持分类性能。实验结果表明，与现有方法相比，所提出

的CAM-HSNet在整体精度(OA)、平均精度(AA)和Kappa系数等指标上均取得了更优的分类表现。 
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Abstract 
Hyperspectral images (HSIs) consist of hundreds of contiguous narrow spectral bands and contain 
rich spectral-spatial information. However, the strong inter-band correlations and complex depen- 
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dencies pose challenges for efficiently modeling discriminative spectral features. To address this is-
sue, we propose CAM-HSNet, which aims to enhance the joint modeling of local spectral features and 
long-range dependencies while improving parameter efficiency. Specifically, we introduce an im-
proved convolutional modulation module and a convolutional feed-forward network to further en-
code the locally extracted spectral features and to build structures capable of capturing long-range 
dependencies and facilitating information interaction. Based on the resulting more discriminative 
spectral representations, the model is able to achieve global semantic aggregation with fewer spectral 
dimensions, thereby reducing the parameter scale required for local-to-global mapping while main-
taining classification performance. Experimental results demonstrate that, compared with existing 
methods, the proposed CAM-HSNet achieves superior performance in overall accuracy (OA), aver-
age accuracy (AA), and the Kappa coefficient. 
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1. 引言 

高光谱图像(Hyperspectral Imaging, HSI)能够在数百个连续且窄的光谱通道上获取地物的反射信息，

不仅提供了丰富的空间细节，还包含细粒度的光谱特征。这些信息赋予了 HSI 在地物识别与分类中更强

的判别能力，因此 HSI 分类已成为遥感领域的重要研究方向。HSI 在矿产勘查[1]、精细农业[2]、环境监

测[3]、植被检测[4]、城市化分析[5]以及农作物面积估算[6]等方面展现出广阔的应用前景。然而，HSI 的
高维特征不可避免地引入了大量冗余信息，并导致 Hughes 效应[7]，这在很大程度上制约了传统分类器的

性能[8]-[11]。 
为缓解高维光谱特征冗余与 Hughes 效应对分类性能的制约，传统方法如 PCA [12]、ICA [13]和 LDA 

[14]-[16]通过线性投影降低波段维度，但难以捕捉复杂的光谱模式。近年来深度学习已成为主流方法[17] 
[18]。CNN 利用一维卷积提取光谱特征[19]或二维/三维卷积捕获光谱–空间信息[20]-[24]，但光谱长距离

依赖建模能力仍有限[25] [26]。Transformer 通过自注意力机制显式建模长距离依赖[27]，如 SpectralFormer 
[28]和 SSFTT [29]，但存在计算复杂度高、缺乏局部归纳偏置、对大规模数据依赖强、训练成本大且容易

过拟合等问题。值得注意的是，图像领域出现的 Transformer 风格卷积网络，通过大核卷积、深度可分离

卷积及卷积前馈网络(ConvFFN)在效率与长距离建模上取得平衡，形成了许多模型方法[30]-[34]，可以为

高光谱特征建模提供启发。 
本文使用 A2S2K-ResNe [24]作为基础模型，考虑到该模型的光谱特征提取模块能够通过局部卷积提

取邻近波段模式，并通过线性映射将这些局部特征整合为全局表示。然而，该模块在跨波段长距离依赖

建模及光谱特征非线性拟合方面仍存在不足。为此，在局部特征到全局特征的线性映射前引入 Transformer
风格卷积模块，以对局部特征进行进一步深度建模，从而增强高阶光谱特征表达并提升分类性能。具体

来说，保留其模型现有光谱特征提取模块以进行局部光谱特征提取，而后使用自适应卷积重叠块嵌入

(Adaptive Convolutional Overlap Patch Embedding, ACPE)，接着通过轻量化注意力增强特征提取模块

(LAM)，即 ConvFFN 和卷积调制块(Convolutional Modulation Module, CMM)对局部光谱特征进一步建模，
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同时为了平衡参数量和计算开销，最后使用线性映射实现光谱全局特征变换。本文的贡献主要体现在以

下方面： 
1. 我们提出了一种改进的卷积重叠块嵌入，其可实现特征增强和选择性关注，增强模块提取特征表

达能力。 
2. 我们提出了一种轻量化注意力增强特征提取模块，通过光谱维度局部特征进行进一步深度建模，

从而增强高阶光谱特征表达并提升分类性能。 
3. 所提出的网络架构提升了特征表示能力，并在三个基准数据集(即 IP、KSC 和 UP)上使用有限的

训练样本实现了最先进的分类准确率。 

2. 相关工作 

2.1. 卷积神经网络 

CNN 凭借局部感受野和参数共享特性，在 HSI 分类中展现了显著成效。Hu 等[19]最早利用一维卷

积堆叠提取光谱特征，但未能充分利用空间信息。后续研究指出，空间信息对分类性能至关重要[35]。
然而，直接对高维 HSI 应用二维卷积网络会导致参数量过大，从而增加过拟合风险[36]。因此，许多方

法通常先进行光谱降维，再利用二维卷积网络提取空间特征[37] [38]。进一步的发展包括金字塔残差网

络 DPyResNet [22]、三维卷积神经网络[39] [40]，它们能够在不同程度上提升光谱–空间特征的建模能

力，尤其是三维卷积神经网络能够在无需预处理的情况下直接提取光谱–空间联合特征。在此基础上，

研究者们提出了多种改进方法，例如基于残差学习的光谱–空间残差网络 SSRN [41]、多尺度三维深度

卷积神经网络 MS-3DNet [23] 、利用局部空间–光谱上下文信息进行特征提取的网络 ContextNet [20]、
利用非局部特征捕获长程上下文信息的网络 ENL-FCN [21]以及基于注意力的自适应光谱空间核改进残

差网络 A2S2K-ResNet [24]。尽管如此，CNN 仍然存在固有限制，例如感受野有限、长距离依赖建模能

力不足[25] [26]。 

2.2. Transformer 风格卷积网络 

近年来，图像领域兴起了一类引入 Transformer 设计理念的卷积网络，通过大核卷积(尤其是深度可

分离卷积)扩展感受野，利用更大范围的空间上下文信息进行特征建模，同时保持较高的计算效率。此类

网络通常结合 ConvFFN 与残差结构，通过多层堆叠捕获复杂的高阶空间相互作用，从而显著提升网络的

表达能力与泛化性能，被称为 Transformer 风格卷积网络。典型代表包括 ConvNeXt [30]，其基于残差堆

叠和大核深度可分离卷积获得类 Transformer 的全局建模能力；FastViT [31]通过多尺度 token 混合提升全

局上下文表达；VAN [32]利用可变形大核卷积建模跨区域依赖；Conv2Former [33]融合卷积与 Transformer
样式的混合结构实现局部–全局协同建模；FocalNet [34]则通过焦点式特征聚合在较低成本下捕获长距离

依赖。尽管这些模型最初应用于图像任务，其结构设计在不依赖昂贵自注意力的情况下实现高效的长距

离建模，为高光谱光谱维度特征建模提供了重要启发。 

3. 网络结构 

如图 1 所示，本文在 A2S2K-ResNet 的基础上对光谱特征提取阶段结构进行了改进，可分为两个模

块：(1) ACPE；(2) LAM。 

3.1. 残差块结构 

本研究采用基础架构中提出的残差块结构来联合提取高光谱图像的光谱与空间特征。残差块的结构

如图 2 所示，包括 Initial-ResBlock、Middle-ResBlock 和 Final-ResBlock 三类。每个残差块由 3D 卷积
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(Conv3D)、批归一化(BN)和 ReLU 激活函数组成，并均嵌入有效信道注意力(effective channel attention, 
ECA) [42]。ECA 通过局部跨通道交互建模长距离通道间的非线性依赖，从而提升特征表达能力与分类性

能。在本文的整体框架中(见图 1)，残差块的结构与位置均保持与基础架构一致：前两个残差块主要负责

光谱特征提取，后两个残差块用于建模空间相关性，其残差块结构如图 2 所示。同时各残差块的卷积核

配置如下表 1 所示。 
 

 
Figure 1. Overview of the CAM-HSNet framework 
图 1. CAM-HSNet 整体框架图 

 

 
Figure 2. The structure of the residual blocks 
图 2. 残差模块结构图 
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Table 1. Parameters of the convolution kernel in each residual block 
表 1. 各残差块的卷积核参数 

ResBlock Kernels Kernels Shapes 

Initial-ResBlock 24 (1,1,7) 

Middle-ResBlock 24 (1,1,7) 

Middle-ResBlock 24 (3,3,1) 

Final-ResBlock 24 (3,3,1) 

3.2. LAM 

LAM 由 CMM 与 ConvFFN 结构组成，通过光谱维度的自适应建模实现特征的提取。该设计保持较

强的特征表达能力，具备更高的灵活性与自适应性，为模型的轻量化与复杂空间建模提供了有效支持。

其中，CMM 提取光谱维度上下文信息，并将其映射为调制权重，进而实现对当前输入特征进行自适应加

权调整，实现对输入特征更灵活的特征增强和选择性关注，类似自注意力机制的功能。而在 ConvFFN 模

块中，卷积操作与标准的前馈网络(Feed-Forward Network, FFN)相结合，使网络在兼顾局部空间特征的同

时，仍能实现强大的非线性拟合能力。通过在 FFN 中嵌入卷积核，模块能够捕获复杂的高阶空间相互作

用，增强模型对局部特征的表达能力。 

3.2.1. CMM 
为在提升特征调制能力和保持结构统一性，本研究在 Conv2Former 的卷积调制思想基础上，结合

FastViT 中的 ConvFFN 结构，设计了一种改进的卷积调制模块 CMM。该模块旨在通过卷积操作提取光

谱维度的上下文信息，并发挥 FFN 的强大非线性拟合能力，生成自适应调制权重，对输入特征进行自适

应加权调制。如图 1 所示，给定输入特征 B C H WX × × × ，CMM 首先通过逐通道卷积(Depthwise Convolution, 
DW)提取局部上下文信息，随后施加批归一化(Batch Normalization, BN)以稳定特征分布，接着由两个线

性变换层和一个非线性激活函数，并使用通道扩展倍数，实现将上下文信息映射为调制权重，同时为防

止权重过度放大或分布失衡，在权重生成后使用双曲正切函数进行约束，从而将权重值限制在(−1,1)范围

内。最终，调制权重作用于输入特征，实现自适应增强，并通过残差连接保持特征一致性与梯度流通，

同时，为了在小样本情况下保持训练过程的稳定性，并避免分支中过度复杂的结构在早期训练阶段对主

干造成干扰，我们在分支输出与主干融合之前引入可学习的通道缩放系数 γ，以自适应调节分支特征的贡

献。即 

( )( )M BN DW X=                                        (1) 

( )( )( )1 1 1 1 1 1W Conv Conv Mσ× × × ×=                                   (2) 

( )ˆ tanhW W=                                          (3) 

( )ˆ1X X W γ′ = +                                        (4) 

这种设计不仅在结构上与 ConvFFN 保持一致，同时融合了 Conv2Former 的动态卷积调制思想和 FFN
的高维拟合能力。 

3.2.2. ConvFFN 
为了在保证局部空间特征建模能力的前提下，同时保持高效计算，本研究引入 ConvFFN。该模块对

FFN 进行了卷积化改造，能够在不显著增加参数量的情况下，有效捕获局部上下文信息。该模块已经被
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验证，其可以在不显著增加参数量的情况下，提取空间局部信息。如图 1 所示，输入特征 B C H WX × × × 首先

经过一个 DW 以提取局部空间上下文信息；随后通过 BN 以稳定特征分布，接着由两个通道线性变换层

和一个非线性激活函数，并使用通道扩展倍数，实现捕获局部上下文信息的同时，增强了网络对复杂特

征模式的建模能力，接着为保证梯度流通与特征一致性，模块在输入与输出之间加入了残差连接，同时，

也对分支引入可学习的通道缩放系数 γ，保持训练的稳定性，以及避免分支中过度复杂的结构在早期训练

阶段对主干造成干扰。整个过程可表示为： 

( )( )Y BN DW X=                                       (5) 

( )( )( )1 1 1 1 1 1Y Conv Conv Yσ× × × ×=                                  (6) 

Z X Y γ= + 
                                        (7) 

3.3. ACPE 

现有的卷积重叠块嵌入通常由标准卷积和归一化组成，对输入特征的自适应调整能力有限。为了增

强卷积重叠块嵌入的自适应能力和特征表达能力，我们在卷积重叠块嵌入之前引入了 CMM，通过对输入

特征进行调制，实现特征增强和选择性关注，使后续的卷积重叠块嵌入能够获得更加丰富和可辨识的表

示。具体地，如图 1 所示，输入特征首先经过 CMM 进行调制，然后使用卷积和 BN 进行块嵌入。该设计

不仅提升了嵌入特征的表达能力，也可以无缝集成到现有的卷积网络。整个过程可表示为： 

( )( )( )Y BN Conv CMM X=                                  (8) 

3.4. 损失函数 

最后，本文使用的交叉熵损失函数如下： 

( ) ( )1
ˆ ˆ, logC

i iiL y y y y
=

= ∑                                   (9) 

其中 iy 为真实标签， ˆiy 为预测标签。C 表示 HSI 中土地覆盖类别的数量。 

4. 实验与结果分析 

4.1. 实验设置 

在本文中，我们对数据集 IP、KSC 和 UP 进行了分类实验。将提出的与流行的深度学习方法 Con-
textNet [20]、SSRN [41]、MS-3DNet [23]、DPyResNet [22]、A2S2K-ResNet [24]和 ENL-FCN [21]进行了比

较。 

4.1.1. 高光谱图像数据集 
本研究使用的高光谱数据集涵盖农业、城市及自然湿地等多样场景，包括 Indian Pines (IP)、Pavia 

University (UP)、Kennedy Space Center (KSC)。IP 数据集采集于美国印第安纳州农业区，由 AVIRIS 传感

器获取，空间尺寸为 145 × 145 像素，保留约 200 个光谱波段，包含 16 类农作物及植被类别，呈现高光

谱数据稀疏和类别不平衡特性。UP 数据集来自意大利帕维亚大学校园区域，采用 ROSIS 传感器，空间

尺寸为 610 × 340 像素，保留 103 个光谱波段，覆盖城市多种地物，如草地、建筑和道路，共 9 类，类别

分布较均衡。KSC 数据集由 AVIRIS 传感器在美国佛罗里达州肯尼迪航天中心附近采集，空间尺寸为 512 
× 614 像素，包含 176 个有效光谱波段，地物类型更具生态多样性，涵盖湿地、植被及裸地等 13 类，类

别分布相对均衡且光谱区分度较强。总体而言，这些数据集在波段数量、空间尺度和地物复杂性上差异
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显著，为高光谱图像分类模型的评估提供了多样化且具有挑战性的实验基准。 
表 2 汇总了三个数据集。对于预处理，数据集中的图像被归一化为零均值和单位方差。从 IP、KSC

和 UP 数据集中分别提取 9 × 9 × 200、9 × 9 × 176 和 9 × 9 × 103 的三维块，且未进行降维。 
 

Table 2. Summary of the characteristics of the IP, UP, and KSC datasets 
表 2. IP、KSC 与 UP 数据集特征汇总 

Description 
Datasets 

IP UP KSC 

Sensor AVIRIS ROSIS AVIRIS 

Spatial Dimension 145×145 610×340 512×614 

Spectral Bands 200 103 176 

Land-cover 16 9 13 

Total sample pixels 10249 42776 5202 

4.1.2. 评估指标 
为全面评估 HSI 分类模型性能，本研究采用总体精度(Overall Accuracy, OA)、平均精度(Average Ac-

curacy, AA)和 Kappa 系数三种指标[43]。其中，OA 衡量模型对所有样本的整体分类能力，即正确分类样

本占总样本的比例，值越高表明整体预测与真实标签越接近。AA 则通过计算各类别准确率的平均值，反

映模型在不同类别上的表现，可揭示对少数类或难分类类别的偏差。Kappa 系数进一步考虑了随机因素

对分类结果的一致性，其取值范围为−1 至 1，数值越接近 1 表示模型预测与真实标签高度一致，比 OA
更严格地评估分类效果。综合使用这三项指标，可从整体精度、类别均衡性及随机一致性三个角度对模

型性能进行全面、可靠的评价。 

4.1.3. 实验细节 
为了确保方法间比较的公平性，我们使用了与 A2S2K-ResNe 中相同的实验配置。Adam [44]被用来

优化和更新模型的参数。在训练时，将总 epoch 数设置为 200，批大小为 32。使用一个周期策略[45]来寻

找最优学习率。它通过在训练过程中逐渐提高学习率，然后逐渐降低学习率来搜索最优值。这种策略有

助于模型实现快速收敛，避免过拟合。此外，一旦找到最优学习率，就会使用余弦退火调度器来调整每

个数据集超过 200 个 epoch 的学习率。整个实验重复 5 次，分别得到 OA、AA、和 Kappa 的均值和标准

差。最后，OA、AA、和 Kappa 以均数 ± 标准差表示。在我们的实验中，和 A2S2K-ResNe 模型训练一

致，所有样本被随机划分为训练集、验证集和测试集，其中训练集和验证集各占总样本的 10%，其余 80%
用于模型评估。所有实验均在配备 24  GB 显存的 NVIDIA RTX 3090 GPU 上进行，实验在如下表，表 3
汇总了三个数据集实验设置信息。 

 
Table 3. Experimental settings 
表 3. 实验设置信息 

Parameter/Datasets IP UP KSC 

Total Samples 10,249 42,776 5202 

Train/Val/Test 1018/1018/8213 4273/4273/34230 516/516/4179 

Best_LR 3.6e-4 3e-4 1e-4 
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续表 

Optimizer Adam 

Epochs 200 

Batch Size 32 

Learning Rate Strategy One Cycle Policy + Cosine Annealing 

Runs 5 

Metrics OA, AA, Kappa (mean ± std) 

4.1.4. 参数分析及设置 

 
Figure 3. OA achieved under different contextual field sizes on the IP, UP, and KSC datasets 
图 3. 在 IP、UP 和 KSC 数据集上，不同上下文视野大小条件下获得的 OA 

 
为研究模型如何利用光谱上下文信息，我们将光谱方向的上下文视野大小作为可调节参数，并在若

干离散取值上进行实验。通过仅在光谱维度改变感受野范围，我们分析不同光谱上下文大小对特征提取

和分类性能的影响。该实验不仅有助于选择适合模型评估的光谱上下文视野大小，同时也可揭示模型在

不同数据集上对光谱信息的利用方式。如图 3 显示，UP 数据集在上下文视野为 11 时精度最高，而 IP 与

KSC 数据集在视野为 5 时表现较好。原因在于 UP 的光谱维度局部特征模式稀疏，LAM 需依赖更大上下

文以增强判别能力；而 IP 与 KSC 的局部光谱特征信息丰富，LAM 更侧重局部特征提取。需要指出的是，

尽管模型在光谱维度上设置的上下文窗口仅为 5，卷积重叠块的嵌入使得实际光谱维度的上下文视野超

过 20，从而不仅实现了更大视野下的建模，同时也增强了模型对光谱信息的建模能力。 

4.2. 测试结果与分析 

我们在 IP、UP 和 KSC 数据集上系统评估了各方法在 OA、AA 和 Kappa 指标上的表现，并对分类结

果进行了可视化分析。实验结果显示，所提出的模型在三个数据集上均取得最优性能：在 IP 数据集上相

较次优方法分别提升 0.32、1.15 和 0.35；在 UP 上提升 0.10、0.09 和 0.12；在 KSC 上提升 0.22、0.27 和

0.24。分类图进一步表明，本方法在空间一致性和地物边界保持方面均优于现有模型。综上，通过深度建

模局部光谱特征并结合上下文调制的策略在不同数据场景中表现出稳定优势，有效提升了高光谱图像分

类效果。详细结果见表 4、表 5、表 6，分类图如图 4、图 5 和图 6 所示。 
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Table 4. OA, AA, and Kappa on the IP dataset with 10% of the samples used for training 
表 4. 在 IP 数据集上使用 10%样本作为训练集所获得 OA、AA 和 Kappa 值 

Class ContextNet [20] MS-3DNet [23] ENL-FCN [21] DPyResNet [22] SSRN [41] A2S2K-ResNet [24] CAM-HSNet 

1 88.78 ± 0.080 66.67 ± 0.471 97.56 ± 0.000 94.59 ± 0.076 57.78 ± 0.423 97.56 ± 0.034 98.47 ± 2.014 

2 98.19 ± 0.005 75.94 ± 0.080 93.15 ± 0.000 93.83 ± 0.040 98.37 ± 0.012 98.62 ± 0.010 98.85 ± 0.147 

3 95.37 ± 0.028 81.39 ± 0.007 97.59 ± 0.000 89.30 ± 0.003 97.47 ± 0.010 98.58 ± 0.006 99.23 ± 0.636 

4 97.04 ± 0.021 88.63 ± 0.063 91.55 ± 0.000 93.51 ± 0.055 99.12 ± 0.0099 98.29 ± 0.014 98.51 ± 1.116 

5 97.78 ± 0.015 95.61 ± 0.054 97.47 ± 0.000 99.26 ± 0.004 97.79 ± 0.013 99.02 ± 0.003 96.91 ± 1.726 

6 98.60 ± 0.008 96.78 ± 0.026 99.24 ± 0.000 98.52 ± 0.007 98.50 ± 0.010 98.71 ± 0.010 99.45 ± 0. 257 

7 90.35 ± 0.098 100.00 ± 0.000 100.00 ± 0.000 83.08 ± 0.178 66.67 ± 0.471 93.10 ± 0.097 86.54 ±8.661 

8 97.76 ± 0.026 89.51 ± 0.091 97.44 ± 0.000 97.63 ± 0.022 96.45 ± 0.029 98.83 ± 0.016 100.00 ± 0.000 

9 86.90 ± 0.102 66.67 ± 0.471 72.22 ± 0.000 66.66 ± 0.471 56.25 ± 0.418 74.26 ± 0.038 95.95 ± 3.355 

10 96.08 ± 0.018 87.41 ± 0.070 94.74 ± 0.000 93.77 ± 0.029 98.33 ± 0.009 98.21 ± 0.016 98.27 ± 1.132 

11 97.35 ± 0.004 76.69 ± 0.096 95.61 ± 0.000 89.78 ± 0.040 99.08 ± 0.005 99.09 ± 0.001 99.62 ± 0.262 

12 94.00 ± 0.012 88.65 ± 0.036 97.00 ± 0.000 83.43 ± 0.107 98.46 ± 0.009 98.37 ± 0.013 97.29 ± 1.980 

13 95.01 ± 0.03 99.78 ± 0.003 97.83 ± 0.000 98.19 ± 0.021 100.00 ± 0.000 99.80 ± 0.002 99.17 ± 0.791 

14 98.49 ± 0.014 90.06 ± 0.087 99.12 ± 0.000 96.00 ± 0.021 98.63 ± 0.010 99.22 ± 0.007 99.73 ± 0.218 

15 94.10 ± 0.031 88.21 ± 0.044 92.80 ± 0.000 91.22 ± 0.040 99.24 ± 0.005 97.86 ± 0.013 98.96 ± 1.308 

16 93.57 ± 0.046 98.53 ± 0.021 100.00 ± 0.000 70.90 ± 0.388 95.63 ± 0.062 95.93 ± 0.057 96.85 ± 1.033 

OA 96.98 ± 0.006 83.44 ± 0.060 96.15 ± 0.054 91.47 ± 0.029 98.38 ± 0.004 98.66 ± 0.004 98.98 ± 0.241 

AA 94.96 ± 0.003 86.91 ± 0.084 95.21 ± 0.028 94.14 ± 0.006 91.11 ± 0.080 96.59 ± 0.003 97.74 ± 0.637 

Kappa 0.9655 ± 0.007 0.8082 ± 0.070 0.9560 ± 0.030 0.9020 ± 0.034 0.9815 ± 0.005 0.9848 ± 0.005 98.83 ± 0.275 

 
Table 5. OA, AA, and Kappa on the UP dataset with 10% of the samples used for training 
表 5. 在 UP 数据集上使用 10%样本作为训练集所获得的 OA、AA 和 Kappa 值 

Class ContextNet [20] [31] MS-3DNet [23] ENL-FCN [21] DPyResNet [22] SSRN [41] A2S2K-Reset [24] CAM-HSNet 

1 99.56 ± 0.002 99.36 ± 0.001 99.98 ± 0.000 98.35 ± 0.017 99.85 ± 0.001 99.91 ± 0.000 99.96 ± 0.007 

2 99.85 ± 0.002 99.80 ± 0.000 100.00 ± 0.000 98.76 ± 0.008 99.98 ± 0.000 99.99 ± 0.000 99.99 ± 0.005 

3 99.19 ± 0.001 98.02 ± 0.017 99.68 ± 0.000 94.22 ± 0.034 99.68 ± 0.003 99.88 ± 0.001 99.54 ± 0.282 

4 99.80 ± 0.002 99.71 ± 0.001 98.94 ± 0.000 99.20 ± 0.005 99.92 ± 0.001 99.95 ± 0.001 99.90 ± 0.091 

5 99.91 ± 0.001 99.94 ± 0.000 100.00 ± 0.000 99.72 ± 0.003 99.94 ± 0.000 100.00 ± 0.00 100.00 ± 0.000 

6 99.75 ± 0.003 99.43 ± 0.003 99.87 ± 0.000 98.52 ± 0.006 99.95 ± 0.001 99.91 ± 0.001 99.93 ± 0.130 

7 98.37 ± 0.022 99.18 ± 0.005 100.00 ± 0.000 97.37 ± 0.004 100.00 ± 0.000 100.00 ± 0.000 99.87 ± 0.164 

8 98.48 ± 0.008 97.13 ± 0.005 99.69 ± 0.000 84.51 ± 0.071 98.28 ± 0.015 98.88 ± 0.006 99.95 ± 0.051 

9 99.26 ± 0.005 99.74 ± 0.002 100.00 ± 0.000 99.60 ± 0.001 99.39 ± 0.003 99.78 ± 0.003 99.95 ± 0.064 

OA 99.57 ± 0.001 99.35 ± 0.001 99.76 ± 0.002 97.05 ± 0.010 99.77 ± 0.001 99.85 ± 0.001 99.95 ± 0.013 
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续表 

AA 99.35 ± 0.002 99.15 ± 0.002 99.70 ± 0.002 96.69 ± 0.006 99.66 ± 0.001 99.81 ± 0.001 99.90 ± 0.032 

Kappa 0.9943 ±0.001 0.9913 ± 0.002 0.9972 ± 0.001 0.9608 ± 0.013 0.9969 ± 0.001 99.81 ± 0.001 99.93 ± 0.017 

 
Table 6. OA, AA, and Kappa on the KSC dataset with 10% of the samples used for training 
表 6. 在 KSC 数据集上使用 10%样本作为训练集所获得的 OA、AA 和 Kappa 值 

Class ContextNet [20] MS-3DNet [23] ENL-FCN [21] DPyResNet [22] SSRN [41] A2S2K-ResNet [24] CAM-HSNet 

1 99.78 ± 0.001 96.42 ± 0.009 99.71 ± 0.000 99.06 ± 0.010 99.95 ± 0.001 99.95 ± 0.001 100.00 ± 0.000 

2 98.79 ± 0.014 95.88 ± 0.012 100.00 ± 0.000 89.72 ± 0.026 100.00 ± 0.00 98.68 ± 0.019 97.02 ± 3.866 

3 82.83 ± 0.047 80.12 ± 0.168 100.00 ± 0.000 81.84 ± 0.074 99.66 ± 0.005 98.72 ± 0.012 98.54 ± 1.345 

4 78.41 ± 0.165 90.06 ± 0.012 98.67 ± 0.000 89.83 ± 0.040 91.22 ± 0.047 94.27 ± 0.042 99.59 ± 0.604 

5 74.22 ± 0.097 85.86 ± 0.034 98.61 ± 0.000 88.34 ± 0.095 100.00 ± 0.00 94.46 ± 0.050 95.37 ± 2.924 

6 92.64 ± 0.050 85.61 ± 0.030 100.00 ± 0.000 88.54 ± 0.138 98.45 ± 0.022 99.82 ± 0.003 98.64 ± 1.666 

7 94.40 ± 0.037 90.75 ± 0.088 100.00 ± 0.000 100.00 ± 0.00 95.42 ± 0.050 99.61 ± 0.005 99.75 ± 0.494 

8 97.49 ± 0.009 98.99 ± 0.008 100.00 ± 0.000 94.81 ± 0.037 99.80 ± 0.003 100.00 ± 0.000 100.00 ± 0.000 

9 99.92 ± 0.001 97.44 ± 0.028 100.00 ± 0.000 99.06 ± 0.002 100.00 ± 0.000 100.00 ± 0.000 100.00 ± 0.000 

10 100.00 ± 0.000 98.78 ± 0.013 100.00 ± 0.000 99.46 ± 0.004 100.00 ± 0.000 100.00 ± 0.000 100.00 ± 0.000 

11 99.90 ± 0.001 98.67 ± 0.013 100.00 ± 0.000 99.90 ± 0.001 100.00 ± 0.000 100.00 ± 0.000 100.00 ± 0.000 

12 99.17 ± 0.006 99.06 ± 0.005 100.00 ± 0.000 94.42 ± 0.056 100.00 ± 0.000 100.00 ± 0.000 100.00 ± 0.000 

13 99.96 ± 0.001 100.00 ± 0.000 100.00 ± 0.000 99.96 ± 0.001 100.00 ± 0.000 100.00 ± 0.000 100.00 ± 0.000 

OA 96.34 ± 0.014 95.61 ± 0.019 99.25 ± 0.020 95.61 ± 0.019 99.29 ± 0.004 99.34 ± 0.0008 99.56 ± 0.184 

AA 93.65 ± 0.026 93.66 ± 0.023 98.77 ± 0.021 94.22 ± 0.024 98.80 ± 0.008 98.88 ± 0.0018 99.15 ± 0.345 

Kappa 0.9593 ± 0.016 0.9511 ± 0.021 0.9913 ± 0.018 0.9511 ± 0.021 0.9921 ± 0.004 0.9927 ± 0.001 99.51 ± 0.205 

 

 
Figure 4. Classification results on the IP dataset. (a) False-color composite image; (b) Ground-truth labels; (c)~(i) Maps gen-
erated by ContextNet, MS-3DNet, DPyResNet, ENL-FCN, SSRN, A2S2K-ResNet and CAM-HSNet approach; (j) Color ref-
erence 
图 4. IP 数据集分类图。(a) 假彩色合成图像，(b) 真实标记图，(c)~(i) 分别由 ContextNet、MS-3DNet、DPyResNet、
ENL-FCN、SSRN、A2S2K-ResNet 以及 CAM-HSNet 的生成的分类图，(j) 颜色标签 
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Figure 5. Classification results on the UP dataset. (a) False-color composite image; (b) Ground-truth labels; (c)~(i) Maps 
generated by ContextNet, MS-3DNet, DPyResNet, ENL-FCN, SSRN, A2S2K-ResNet and CAM-HSNet; (j) Color reference 
图 5. UP 数据集分类图。(a) 假彩色合成图像，(b) 真实标记图，(c)~(i) 分别由 ContextNet、MS-3DNet、DPyResNet、
ENL-FCN、SSRN、A2S2K-ResNet 以及 CAM-HSNet 的生成的分类图，(j) 颜色标签 

 

 
Figure 6. Classification results on the KSC dataset. (a) False-color composite image; (b) Ground-truth labels; (c)~(i) Maps 
generated by ContextNet, MS-3DNet, DPyResNet, ENL-FCN, SSRN, A2S2K-ResNet and CAM-HSNet; (j) Color reference 
图 6. KSC 数据集分类图。(a) 假彩色合成图像，(b) 真实标记图，(c)~(i) 分别由 ContextNet、MS-3DNet、DPyResNet、
ENL-FCN、SSRN、A2S2K-ResNet 以及 CAM-HSNet 的生成的分类图，(j) 颜色标签 

4.3. 消融实验 

为系统评估所提出方法中各组件的作用，我们在 UP 数据集上进行了消融实验，并构建三种不同的
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模型配置。相应结果汇总于表 7。具体而言： 
1) Setting 1：仅采用 Conv + BN 模块。该配置移除 CMM 与 LAM 模块，用以作为最简基线；2) Setting 

2：在 Setting 1 的基础上引入 CMM，以分析其在光谱维度特征建模及类别判别能力提升方面的贡献；3) 
Setting 3：在 Setting 2 的基础上进一步加入 LAM 模块，以探究其在类别判别能力提升方面的贡献。 

实验结果显示，所提出模型的 OA、AA 与 Kappa 系数均有提升。这一现象表明，模型在整体精度提

高的同时，各类别的判别能力和分类一致性也得到增强，说明特征提取模块能够有效提升模型对不同类

别的区分能力。此外，Setting 1 的结果表明，在样本有限的情况下，仅依赖单个 Conv + BN 模块，模型

就能够实现分类精度的提升，同时降低参数量和计算开销。这一现象说明，在小样本条件下，模型参数

多并不必然带来性能提升。然而，这并不意味着基础模型中更多的参数在大样本条件下无效。实际上，

这表明模型设计应能够实现特征的渐进式学习：在小样本下优先学习简单模式，在大样本下进一步捕获

复杂模式，从而保证模型在不同样本规模下均能保持良好的特征表征能力和分类性能。 
综上，消融实验验证了各模块设计的合理性与互补性，进一步证明了所提出方法在特征表达与分类

性能上的有效性。 
 

Table 7. Ablation experiments of the proposed CAM-HSNet on the UP dataset 
表 7. 所提出 CAM-HSNet 在 UP 数据集上的模块消融实验 

CASE 
metrics 

OA (%) AA (%) Kappa (%) 

1 99.886 ± 0.130 99.822 ± 0.180 99.849 ± 0.171 

2 99.904 ± 0.099 99.857 ± 0.114 99.872 ± 0.132 

3 99.951 ± 0.013 99.904 ± 0.032 99.935 ± 0.017 

4.4. 计算成本和内存使用分析 

我们进一步分析了所提出方法的时间复杂度和空间复杂度。以 IP 数据集为例，表 8 列出了 CAM-HSNet
与 SSRN、A2S2K-ResNet 在 OA、Kappa、参数数量、浮点运算量(FLOPs)以及推理时间等方面的比较结果。

实验结果表明，本文基于 A2S2K-ResNet 的改进模型，通过优化局部到全局特征映射，在降低参数量的同时，

实现了更优的分类性能。进一步观察可知，在光谱特征提取的后期阶段，轻量化结构的计算优势尚未完全显

现，其主要贡献在于提供更大的感受野以建模长距离依赖，从而提升了模型的 OA 和 Kappa。同时，模型在

GPU 上的显存占用较基础模型略有下降，为后续在计算效率与资源优化方面的研究提供了潜在的方向。 
 

Table 8. Comparison of complexity and performance of different methods on the IP dataset 
表 8. 不同方法在 IP 数据集上的复杂度与性能比较 

Model SSRN A2S2K-ResNet CAM-HSNet (ours) 

Params 364.1K 370.7K 257.2K 

GPU Memory (MB) 11.34 14.98 14.58 

OA (%) 98.38 ± 0.004 98.66 ± 0.004 98.98 ± 0.241 

Kappa 0.9815 ± 0.005 0.9848 ± 0.005 98.83 ± 0.275 

Flops (MFLOPs) 311.59 335.93 471.08 

Inferrence Time 0.89s 1.19s 1.87s 
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5. 结论 

本文通过对光谱局部特征的进一步建模，并结合改进的调制结构及具有较大感受野的轻量化模块，

实现了光谱局部特征与长距离依赖的联合建模，同时提升了参数利用效率，从而提高了分类精度。实验

结果表明，本方法在减少模型参数的情况下仍保持优异的分类性能，并相比其他先进方法显著增强了高

光谱特征的判别性，从而提高了模型对各类别的识别能力。 
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