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摘  要 

针对三维环境中多无人机路径规划面临着样本效率低、长时程决策困难和鲁棒性不足等挑战，本文提出

一种基于分层策略与世界模型增强的多智能体深度确定性策略梯度算法框架(HWC-MADDPG)。首先，引

入对比学习机制，从高维观测中提取时序一致性的鲁棒状态表征，增强了状态表征的区分度；其次，设

计多智能体层次化策略网络架构，通过高层策略网络规划宏观意图，低层策略网络执行具体动作的方式，

将路径规划任务分解，提升决策能力；最后，集成共享的世界模型，通过其内在的前瞻性推演生成想象

奖励，优化Critic网络的价值评估，提升了决策前瞻性和收敛速度。实验结果表明，本文提出的算法在学

习速度、策略稳定性和飞行安全性上均优于传统的多智能体深度确定性策略梯度算法(MADDPG)。该研

究为解决三维环境下的多智能体路径规划问题提供了一种更高效的解决方案，具有一定的理论价值与应

用前景。 
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Abstract 
Addressing challenges in multi-UAV path planning within 3D environments—such as low sample effi-
ciency, difficulties in long-term decision-making, and insufficient robustness—this paper proposes a 
hierarchical strategy and world model-enhanced multi-agent deep deterministic policy gradient al-
gorithm framework (HWC-MADDPG). First, a contrastive learning mechanism is introduced to extract 
temporally consistent robust state representations from high-dimensional observations, enhancing 
the discriminative power of state representations. Second, a hierarchical multi-agent policy network 
architecture is designed. By decomposing the path planning task—where the high-level policy net-
work formulates macro-intentions and the low-level policy network executes specific actions—deci-
sion-making capabilities are enhanced. Finally, an integrated shared world model generates imagined 
rewards through its inherent forward-looking inference, optimizing the value assessment of the Critic 
network and improving decision foresight and convergence speed. Experimental results demonstrate 
that the proposed algorithm outperforms the traditional Multi-Agent Deep Deterministic Policy Gra-
dient (MADDPG) in learning speed, policy stability, and flight safety. This research offers a more effi-
cient solution for multi-agent path planning in 3D environments, holding significant theoretical value 
and practical application potential. 
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1. 引言 

近年来，随着人工智能、芯片等技术的发展，无人机因其低成本和高机动性的特点，广泛应用在侦

察监视[1]、协同打击[2]、搜索救援[3]和货物运输[4]等军事与民用领域，并且展现出了出色的能力。但是，

随着任务复杂度和环境不确定性的增加，单无人机在面对复杂环境和突发情况时，往往难以满足任务要

求。研究者们将注意力集中在多无人机系统上，多无人机系统因其任务执行效率高、系统鲁棒性强等优

势已经成为当前研究热点[5]。然而如果要充分发挥多无人机系统的效能，核心在于路径规划问题。针对

这一关键问题，国内外学者提出了多种解决方案。 
现有的路径规划主要分为传统算法和智能算法两大类。传统的基于图搜索的算法[6]虽然在静态环境

中可以生成最短路径，但是基于图的搜索方法并不适合智能体之间的协调。启发式算法[7]运行速度快，

但是计算量大，在面对环境的变化时往往缺乏适应性。群智能体算法[8]虽然在避障和编队控制方面取得

了一定效果，但是这种方法依赖局部规则容易陷入局部最优，不能保证全局最优。基于博弈论的方法[9]
将无人机任务分配与规划等问题视为一种博弈问题，从而为其提供了新的解决方法，但是这些公式预先

定义了环境信息，缺乏面对未知环境的能力。遗传算法[10]虽然在多无人机环境中发挥优势，但是其迭代

次数多，计算开销大。 
强化学习[11]方法不需要先验知识，根据环境迭代反馈来优化决策，可以捕捉复杂环境下的不确定性。

唐峯竹等[12]在深度 Q 网络(DQN)算法的基础上提出了一种多无人机分布式动态任务分配方法，对任务
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进行动态分配，提高了系统的任务完成度。周彬等[13]在 Q-Learning 算法上根据接收信号的强度作为回

报值，提出了基于导向强化 Q 学习的无人机路径规划。任君凯等[14]将世界模型与强化学习算法相结合

用于机器人运动控制，降低了对真实环境交互的依赖性。 
随着神经网络的发展，将深度学习和强化学习相结合的深度强化学习(DRL)为多无人机智能控制提

供了新的解决思路[15]。Zeng Y 等[16]利用多步学习技术结合双深度 Q 网络(DDQN)算法提出了基于直接

强化学习的无人机导航算法。张天浩等[17]将人工势场法与 MADDPG 算法融合，解决了 MADDPG 算法

早期盲目探索、收敛性差的问题。王娜[18]利用混合主动行为选择机制评估策略，设计了一种深度学习强

化方法，实现了无人机的航迹控制和任务规划。Yan 等[19]利用分层强化学习的方法将总任务分解为子任

务，结合 MAXQ 算法降低任务复杂性，提高学习速度。 
虽然上述研究都已经取得了一定进展，但是三维环境下的多无人机路径规划面临着决策复杂性提高、

状态空间维度上涨和长期规划能力受限等瓶颈。本文聚焦于多无人机路径规划，为解决三维环境下多无

人机自主决策目标并且规划安全高效的飞行路径的问题，提出了一种基于分层策略和世界模型增强的多

智能体深度确定性策略梯度算法(HWC-MADDPG)。该算法首先引用对比学习机制，从高维观测中提取出

具有区分度的状态信息；其次，设计了一种层次化策略架构，将决策过程分解为高层宏观意图选择与低

层动作执行，从而实现决策的有效分解；最后，构建了一个共享的世界模型，通过预测智能体未来状态

和奖励，克服长期规划能力不足的瓶颈，增强决策前瞻性。 

2. 问题建模 

在三维环境中，n 架无人机从不同位置出发，通过自主规划到达目标点，同时保持自身安全，这要求

无人机不仅要规划自身路径，还要进行隐式交互。 
我们将多无人机路径规划建模为去中心化的部分可观测马尔可夫决策过程(Dec-POMDP)。Dec-

POMDP 可以用元组 , , , , , ,U S A P O γΩ 表示，其中 { }1,2, ,U n= ⋅⋅⋅ 为智能体集合，n 为智能体数量；S 表示

状态空间；A 表示动作空间；P 为状态转移函数；R 表示奖励函数；Ω表示观测空间； γ 为折扣率。 

2.1. 状态空间 

全局状态 ts S∈ 描述了在 t 时刻环境中的所有的信息，包括所有智能体的位置与速度、目标位置与完

成情况。 

2.2. 动作空间 

每一个智能体 i 的动作空间 iA 是一个三维连续动作集合 ( )=i i i iA x y z, , 。 

2.3. 观测空间 

由于问题的部分可观测性，在每个时刻 t，智能体 i 只能获得一个局部的、以自我为中心的观测 iio ∈Ω ，

观测空间 ( ), , ,i i i ti oio p v p p= 。其中 [ ], ,i i i ip x y z= 表示智能体自身的位置， , ,i xi yi ziv v v v =  表示智能体当

前的速度信息， [ ], ,ti ti ti tip x y z= 表示智能体距最近未完成目标点的位置， [ ], ,oi oi oi oip x y z= 表示与其他智

能体群的平均相对位置。 

2.4. 奖励函数 

智能体在执行动作后会受到奖励，为了正确引导智能体的动作，该奖励函数被精心设计以鼓励智能

体高效安全完成任务，总奖励函数如公式(1)所示。 

task coop dist coll time=R R R R R R+ + + +                                 (1) 
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其中 taskR 为任务奖励， coopR 为协作奖励， distR 为距离惩罚， collR 为碰撞惩罚， timeR 为时间惩罚。 
首先给予完成任务的智能体一个任务奖励,如公式(2)所示。 

task ,taski
i

R r= ∑                                        (2) 

奖励值设置如公式(3)所示。 

2
,task

500 <30
0

i ti
i

p p
r

 −
= 


，

，其他
                                 (3) 

当有任务被完成时，给予所有无人机一个协作奖励，如公式(4)所示。 

coop ,coopi
i

R r= ∑                                       (4) 

奖励值设置为公式(5)。 

, , 2
,coop

100 <30

0
i j ti j

i

p p
r

 −= 


，

，其他
                                (5) 

该式表示只要有任务被完成时，智能体就会获得一个协作奖励。 
为引导智能体飞向目标位置，我们设置一个距离惩罚，如公式(6)所示。 

dist dist 2  i tiR p pα= −                                    (6) 

以鼓励智能体接近最近的任务，无人机之间的碰撞惩罚如公式(7)所示。 

coll coll
i

R r= ∑                                       (7) 

奖励值设置如公式(8)所示。 

coll

50 10
0

ijd
r

− <
= 


，

，其他
                                  (8) 

其中 ijd 为无人机之间的距离，时间惩罚如公式(9)所示。 

time ,timei
i

R r= ∑                                     (9) 

其中 ,time 1ir = − ，鼓励尽快完成任务。 
在 Dec-POMDP 过程中，智能体的联合动作 A 与环境交互后从状态 S 转移到 S ′，在新状态下智能体

做出动作并且与环境重新交互。智能体将上述过程不断更新迭代，最终目的是最大化奖励的同时学会最

优策略，实现高效的路径规划。 

3. 层次化策略和世界模型的 MADDPG 算法 

本节阐述了多智能体深度学习框架，该框架在标准 MADDPG 集中训练、分布执行式基础上对 Actor
和 Critic 进行了增强，集成了用于提升状态区分度的对比学习机制、Actor 的层次化策略以及想象增强的

世界模型，提升了多无人机路径规划的效率和鲁棒性。 

3.1. 整体框架 

算法的整体框架如图 1 所示。在训练阶段，全局信息 ( ), , ,s a r s′ 存入经验回放区。一个增强的 Critic
网络利用对比编码器的状态表征信息和世界模型的想象推演指导层次化 Actor 的更新。同时，对比编码
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器和世界模型利用经验回放区的数据进行训练。目标网络通过软更新的方式进行同步，确保训练稳定。

在执行阶段，每个智能体接受对比编码器的状态表征信息，由高层次策略网络输出宏观意图选择，低

层次策略网络执行具体动作。层次化 Actor 网络集成了对比编码器和层次化策略以实现状态到动作的

映射。 
 

 
Figure 1. HWC-MADDPG algorithm framework 
图 1. HWC-MADDPG 算法框架 

3.2. 对比学习 

在三维环境下的多无人机路径规划中，每架无人机都能够获得以自身为中心的高维局部观测(包含自

身状态、最近目标点位置、其他无人机相对位置等)，这将导致原始的观测空间维度较高且包含冗余信息，

直接使用原始观测作为输入，策略网络难以获得对决策有效的信息特征，导致策略早期盲目的探索严重。 
针对无人机的观测数据随时间变化但是其拓扑结构相对稳定的特点，我们引入对比编码器机制，采

用时序一致的采样策略，通过最大化相似样本对和最小化不相关样本对以提升状态区分度。 
对比编码器 E∅采用三层 MLP 架构，将原始高维观测信息映射到一个潜在空间。我们从经验回放区

为每一个观测 to 采样一个正样本 to+ 和负样本 to− ，考虑到无人机飞行轨迹的连续性，其中正样本 to+ 为同

一轮次中相邻时间步内的随机采样，以捕捉时间维度的相关性；负样本 to− 为不同轮次中的随机采样，以

确保样本的上下文的无关性。通过最小化损失函数来优化对比编码器，如公式(10)所示。 

( )( )
( )( ) ( )( )contrastive

1

exp sim , /
log

exp sim , / exp sim , /K
kk

z z
L

z z z z

τ

τ τ

+

+ −
=

 
 = −
 + ∑

                  (10) 

其中 z E∅= 为锚点样本，z+ 和 z−分别为正、负样本， ( )sim ,z z+ 为正负样本的余弦相似度，τ 为超参数，

用于调节相似度分布。对比编码器被嵌入到 Actor 和 Critic 网络，促使智能体学习到有利于决策、鲁棒的

状态表征，为决策和评估提供高质量的状态表征，有效缓解信息冗余和前期策略学习困难等问题。 

https://doi.org/10.12677/csa.2026.161009


张华东 等 
 

 

DOI: 10.12677/csa.2026.161009 107 计算机科学与应用 
 

3.3. 层次化策略 

由于目标点选择的离散性、长时间特点和无人机动作的连续性、实时性特点在时间尺度和动作空间

上存在天然矛盾。无人机同时感知自身状态和环境状态等信息，状态空间维度上涨，而动作空间的连续

性进一步加剧了决策难度。传统的单网络仅学习状态到动作的映射关系难以同时兼顾宏观调度和微观控

制，容易出现梯度消失和收敛缓慢等问题。 
为了解决路径规划行为的复杂性，我们采用层次化策略网络作为 Actor 的核心，将决策拆分为高层

和低层两部分，构建“意图–动作”双层决策框架，通过决策粒度拆分化解这一矛盾。 
高层策略采用两层 MLP 网络，通过接受对比编码器 E∅编码后的状态表示，选择一个离散高层次宏

观意图 tk ，该决策以一定的频率 H_freq 运行，以适应任务分配的长周期特点。高层策略如公式(11)所示。 

{ }
( )high1,2, ,

arg maxt tk K
k k zπ

∈ ⋅⋅⋅
=                                  (11) 

其中 ( )high tk zπ 为高层次策略网络在给定状态表征 tz 的前提下，选中宏观意图 k 的概率。低层策略由四个

专门化的子网络构成，每个子网络由三层 MLP 网络构成，一旦高层次策略选择了意图，对应的低层次子

网激活并输出具体的动作 ta ，如公式(12)所示。 

( )low, tt k ta zπ=                                       (12) 

这种针对性的层次化设计实现了目标点选择与动作执行的解耦，有效降低了无人机学习策略的难度，

使得无人机既能对宏观局面有着良好的判断，又能灵活应对局部情况。 

3.4. 世界模型 

在多无人机快速飞行的场景中，往往伴随着碰撞风险并且试错成本极高。传统的强化学习算法依赖

环境交互的数据，样本利用率较低并且智能体的决策缺乏对未来状态的预判能力。为了提升决策的前瞻

性并且加速收敛，本文引入世界模型，该模型通过监督学习的方式从经验回放区中采样来预测环境的变

化。 
世界模型由动力学网络和奖励网络组成，通过接受所有智能体的状态和动作，输出下一个状态和奖

励的预测，如公式(13)所示。 

( ) ( )1 ˆ, ,t̂ t t ts r W s aθ+ =                                      (13) 

其中 ts 和 ta 为当前时刻的状态和动作， 1t̂s + 为下一时刻的预测状态， t̂r 为执行动作后的预测奖励。动力学

网络和奖励网络分别为三层 MLP 和两层 MLP 网络。世界模型从当前状态 s 出发，使用目标策略在网络

中模拟未来 H_imagine 步的想象推演，得到一系列未来轨迹，提前评估策略可能导致的风险或收益。累

计折扣奖励如公式(14)所示。 
1

imagine, ,
0

ˆ
H

h
i i t h

h
R rγ

−

+
=

= ∑                                      (14) 

其中 γ 为折扣因子， ,î t hr + 为智能体 i 第 t + h 步的想象奖励，通过引入想象奖励 imagineR ，将其作为内在奖

励与外部环境奖励结合，Critic 网络能更准确的评估当前动作，增强 Critic 网络的价值估计准确性，从而

引导 Actor 网络生成具有前瞻性的飞行策略，减少对真实环境交互的依赖，提高了飞行安全性。 
世界模型的损失函数用预测状态和奖励相对真实状态和奖励的均方误差来表示，如公式(15)所示。 

1

2 2
, , , 1 1world ˆ ˆ

t t t ts a s r t t tL s s r r
+ ∼ + +

 = − + −                             (15) 
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其中
2

1 1ˆt ts s+ +− 为预测状态与真实状态的均方误差，
2ˆt tr r− 为预测奖励与真实奖励的均方误差。 

3.5. Actor-Critic 框架 

每个智能体的策略网络都采用层次化策略，接收对比编码器处理的状态特征，高层策略选择技能，

低层策略生成具体动作，如图 2 所示。 
 

 
Figure 2. Hierarchical Actor network architecture 
图 2. 层次化 Actor 网络结构 

 
Actor 网络 iπ 采用确定性梯度策略，通过最大化 Critic 网络的期望进行更新，其策略梯度可表示为公

式(16)。 

( ) ( ) ( )
( ),a 1, , ,

i i i i i i
i s i i a i N a o

J o Q s a aπ
θ θ π

π π∼ =

 ∇ ≈ ∇ ∇ …  
                      (16) 

其中 iθ 是 Actor 网络 iπ 的可学习参数， iQπ 为 Critic 网络。 
Critic 网络结构如图 3 所示。 
 

 
Figure 3. Enhanced Critic network architecture 
图 3. 增强 Critic 网络结构 

 
Critic 网络 iQ 通过最小化时序差分(TD)误差损失函数进行更新，如公式(17)所示。 

( ) ( )( )2enhanced
,a, , 1, , ,i s r s i i NL Q y Q s a a′∼

 = − ⋅⋅⋅  
                          (17) 

其中 ( )1, , ,i NQ s a a⋅ ⋅ ⋅ 为当前 Critic 网络对状态动作的价值估计， enhanced
iy 为增强的 TD 目标，Critic 网络除

了接受智能体的观测和动作外，还利用世界模型生成的想象奖励构建一个增强的 TD 目标，其计算方式

如公式(18)所示。 

( ) ( ) ( ) ( )( )enhanced
imagine, 1 , , ,

d di i i i i i N Ny r R d Q s o oα γ π π′ ′ ′ ′ ′ ′= + + − ⋅⋅⋅                  (18) 

其中 iQ′为目标 Critic 网络。 
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3.6. 训练流程 

该框架通过对比编码器、世界模型与策略网络协同优化，总损失函数如公式(19)所示。 

total constrastivr e worlw drl cL L L Lλ λ λ= + +                             (19) 

其中 rlL 为所有智能体 Actor 和 Critic 网络损失之和， constrastiveL 为对比学习损失， worldL 为世界模型损失，

rlλ 、 cλ 和 wλ 为对应的权重系数。通过构建一个多任务学习目标，促使智能体更好地应对动态三维环境。 
根据上述描述，算法伪代码如表 1 所示。 
 

Table 1. HWC-MADDPG algorithm flowchart 
表 1. HWC-MADDPG 算法流程 

Algorithm：HWC-MADDPG 

初始化： 

for 智能体 i to N do 

初始化层次化 Actor 网络 iπ 和增强 Critic 网络 iQ  

初始化目标层次化 Actor 网络 iπ ′和目标增强 Critic 网络 iQ′  

end for 

初始化世界模型 MΨ  

初始化对比编码器 E∅  

初始化空的经验回放区 D 

训练循环：for Episode = 1 to M do 

初始化全局状态 s0 

初始化智能体当前宏观意图 

for t = 0 to T − 1 do 

for 智能体 i = 1 to N do 

获得局部观测 ,i to  

使用对比编码器提取特征 

if t % H_freque = 0 then 

高层次策略选择意图 ,i tk  

end if 

低层次策略执行动作 ,i ta  

end for 

在环境中执行联合动作 ta ，接受奖励 tr 并更新下一状态 1ts +  

将元组 1, , ,t t t ts a r s + 存储到经验回放区 D 

if |D| > B then 

从经验回放区 D 采样随机数据 

更新世界模型 MΨ  (公式 15) 

计算想象奖励 imagineR  (公式 14) 

for 智能体 i to N do 

更新对比编码器 E∅  (公式 10) 
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续表 

更新 Critic 网络 iQ  (公式 17) 

更新 Actor 网络 iπ  (公式 16) 

软更新目标网络 iπ ′和 iQ′  

end for 

end if 

end for 

end for 

4. 实验和分析 

为了验证算法的有效性，本节构建了三维环境下的多无人机场景进行实验评估。 

4.1. 实验设置 

仿真实验在 500 m*500 m*500 m 的三维虚拟场景下进行。任务点数量为 4，无人机数量为 5，无人机

初始化位置在以原点为中心半径为 150 m 的水平圆周上，高度随机分布在 50 m~100 m 范围内。任务点数

量为 4，在高度 30 m~150 m 范围内随机分布，任务完成半径为 30 m，无人机安全距离为 10 m。在达到

最大时间步数 T = 400 或者任务完成后，训练结束。 

4.2. 训练设置 

本文所有优化器均采用 Adam 优化器，HWC-MADDPG 网络结构和超参数分别如表 2 和表 3 所示。 
 

Table 2. HWC-MADDPG network component architecture 
表 2. HWC-MADDPG 网络组件结构 

网络组件 结构描述 

对比编码器 [256, 256, 128] 

高层策略网络 [64, 4] 

低层策略网络 [128, 64, 3] 

Critic 网络(编码器) [256, 128] 

Critic 网络(Q 网络) [256, 128, 1] 

世界模型(动力学) [256, 256, 60] 

世界模型(奖励) [128, 5] 

 
Table 3. HWC-MADDPG parameter values 
表 3. HWC-MADDPG 参数值 

参数 值 

Actor 学习率 1*10-4 

Critic 学习率 3*10-4 

世界模型学习率 3*10-4 

折扣因子 0.95 
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续表 

软更新系数 0.01 

经验回放区大小 100,000 

批次大小 256 

高层决策频率 10 

想象步数 5 

对比学习特征维度 128 

4.3. 基线算法 

为了对比验证所提方法的有效性，选取三类代表性算法与 MADDPG 算法进行对比，分别为多智能

体深度确定性策略梯度算法(MADDPG)、分层演员–评论家算法(HAC)、多智能体近端策略优化算法

(MAPPO)。 
MADDPG 算法作为多智能体算法中表现先进的算法之一，直观体现出 HWC-MADDPG 算法相较于

原始 MADDPG 算法的改进效果。HAC 算法作为层次化强化学习算法，其采用目标条件化层次结构，与

HWC-MADDPG 算法中的层次化决策进行对比。MAPPO 算法作为 on-policy 算法与 HWC-MADDPG 算

法的 off-policy 进行对比。 

4.4. 结果分析 

从图 4 可以看出，随着训练轮次的增加，HWC-MADDPG 算法和 MADDPG 算法的奖励值逐渐增加。

在训练到达 500 轮次左右时，HWC-MADDPG 算法的奖励值趋于平缓并总体到达收敛。HWC-MADDPG
算法的收敛速度和稳定性高于基线 MADDPG 算法，相较之下，MAPPO 算法和 HAC 算法的奖励始终处

于一个较低范围，表明他们并未学习到有效的策略，陷入了局部最优。 
 

 
Figure 4. Reward function curve 
图 4. 奖励函数曲线 
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四种算法的任务完成率情况如图 5 所示，从图 5(a)中可以直观的看出 HWC-MADDPG 算法在 350 轮

次展现出了较高的学习速度，并且早于其他算法到达了接近 100%的任务完成率。MADDPG 算法到达 100%
任务完成率后的轮次明显晚于 HWC-MADDPG 算法，并且其稳定性低于 HWC-MADDPG 算法，而其他

两种算法的任务完成率始终在较低水平徘徊，证明他们难以到达目标点。95%置信区间的任务完成率曲

线如图 5(b)所示，置信区间的宽度反映了学习过程中的性能的波动程度。从图中可以看出，在初始阶段，

所有算法都表现出较高的不确定性，但是随着轮次的增加 HWC-MADDPG 算法波动程度小于 MADDPG
算法，到达收敛后的 HWC-MADDPG 算法的性能稳定性也更高。这表明 HWC-MADDPG 算法具有更稳

健的学习梯度。 
 

 
Figure 5. Task completion rate curve 
图 5. 任务完成率曲线 

 

 
Figure 6. Comparison radar chart 
图 6. 对比雷达图 
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我们引入雷达图从安全性、任务完成、收敛速度、稳定性、奖励水平五个维度进行了对话的对比，

雷达图的覆盖面积直观的代表了算法的性能表现。如图 6 所示，HWC-MADDPG 算法在五个维度都高于

其他算法，尤其在奖励水平、稳定性和收敛速度方面显著优于 MADDPG 算法。 
为了更准确量化各算法的性能差异，我们统计了 HWC-MADDPG 算法与各基线算法在训练后期的多

项指标，对比结果如表 4 所示。从最终完成率来看，本文提出的 HWC-MADDPG 算法相比 MADDPG 算

法不仅均值更高，其标准差显著降低，表明 HWC-MADDPG 算法具有更强的鲁棒性，展现出稳定的高质

量策略。相比之下 MAPPO 和 HAC 算法均为达到有效水平。HWC-MADDPG 算法在碰撞率较低的情况

下，其仅用 350 个轮次就可以达到 85%的任务完成率，而 MADDPG 算法则需要 425 个轮次，在保证安

全性的同时有效减少了多无人机的无效探索。 
 

Table 4. Comparison of performance metrics for various algorithms 
表 4. 各算法综合性能指标对比 

算法 任务完成率(%) 碰撞率(%) 平均奖励 最高任务完成率(%) 收敛轮次(85%) 

MADDPG 98.9 ± 6.8 0.5 ± 1.7 −4342 100.0 425 

MAPPO 7.4 ± 13.2 7.0 ± 0.5 −56528 75.0 N/A 

HAC 4.6 ± 10.9 0.5 ± 0.7 −73197 50.0 N/A 

HWC-MADDPG 99.9 ± 1.8 0.4 ± 1.5 −1896 100.0 350 

5. 结论与展望 

本文针对三维环境中多无人机路径规划面临的样本利用率低、策略前瞻性不足和鲁棒性差等挑战，

提出了 HWC-MADDPG 算法框架。通过自监督的方式训练对比学习编码器，提取观测信息中具有区分度

的状态表征，提升策略的泛化能力。将每个智能体的 Actor 网络设置为层次化策略架构，通过高层选择宏

观意图，低层执行具体动作实现了策略的细粒度化拆分。利用世界模型的内在推演生成想象奖励，对 Critic
网络中的 TD 目标进行增强，提升了决策前瞻性。仿真结果表明，HWC-MADDPG 算法相较其他主流基

线算法在任务完成率、学习速度、安全性等方面展现出优越的性能。研究结果表明该方法为多智能体路

径规划提供了一个更高效、更鲁棒的解决方案。 
当前研究是在特定的静态环境下进行的，其在复杂场景下的适用性有待研究，未来可以进一步研究

在受限环境下的多智能体协同优化，增加多智能体的数量，面向大规模真实场景下的多无人机协同优化。 
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