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Abstract

To address the challenges of data imbalance, insufficient feature extraction, and limited model gen-
eralization in heart sound classification, this paper proposes a heart sound anomaly detection
method based on multi-modal feature fusion and advanced ensemble learning. Firstly, using the
Challenge2016 dataset, data preprocessing including band-pass filtering and normalization is ap-
plied, and an anomaly-oriented data augmentation strategy is proposed to mitigate sample imbal-
ance. Secondly, multi-dimensional features, including time-domain statistics, frequency-domain
spectral centroid, and wavelet-domain energy entropy, are extracted to construct a comprehensive
feature space. In terms of model construction, a CNN-BiLSTM deep neural network is designed to
capture local and long-term dependency features, combined with the stability of Support Vector
Machine (SVM). Finally, six ensemble strategies, including dynamic weighting, confidence weighting,
and meta-learning, are proposed. Experimental results show that the meta-learning ensemble strat-
egy performs the best, with an accuracy of 98.89% and an F1-score of 0.9872. This method ensures
high accuracy while maintaining good robustness, providing an effective solution for intelligent di-
agnosis of valvular heart diseases.
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Table 1. Cardiac sound signal feature extraction indicators
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Figure 1. SVM heart sound classification model flowchart
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Figure 2. Flowchart of the BILSTM-CNN heart sound classification model
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Figure 3. Integrated model flowchart
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Figure 4. Preprocessing of the heart sound signal: (a) Original heart sound signal; (b) Filtered heart sound signal; (c) Heart
sound signal after filtering and normalization; (d) Spectrum of the original heart sound signal; (¢) Spectrum of the filtered heart
sound signal
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Figure 5. Segmentation and display of heart sound signals
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Figure 6. Confusion matrix of the LSTM model
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Figure 10. Comparison of SVM, LSTM, and ensemble methods in terms of Accuracy, Precision, Recall, and f1 score
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