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Abstract

The detection of the growth interface temperature in the Czochralski process for silicon crystal
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growth welding process is considered an important task for ensuring the successful subsequent
crystal pulling. Existing target detection models exhibit issues such as inaccurate localization and
high false detection rates in the detection of welding bump targets. An improved YOLOv8 algorithm
based on feature enhancement is proposed in this paper. Firstly, to address the common problems
of false and missed detections of small targets in welding aperture images, the concept of BiFPN is
introduced to enhance the neck part of YOLOv8m. To further improve detection accuracy, a more
lightweight dynamic upsampling operator, DySample, is utilized in the feature fusion network to
enhance the quality and richness of the fused features. The YOLOv8-A model is evaluated on an in-
dustrially provided dataset, and experimental results indicate that, compared to the original algo-
rithm, the parameter count and computational load of YOLOv8-A are reduced to 2.19 x 10*7, while
achieving a 98.2% mAP and improving small target detection by 5.8 percentage points. The effec-
tiveness and superiority of this method are validated through comparisons with other mainstream
target detection algorithms.
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Figure 1. Aperture protrusions diagram during the temperature-raising process
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Figure 2. YOLOvV8m structure
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Figure 5. Visualization of feature maps
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Figure 6. Dynamic up-sampling based on sampling points
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Figure 8. Neck feature network design

8. FERFHEMMIRIT

DOI: 10.12677/csa.2026.161007 79 HEHUR 5 R


https://doi.org/10.12677/csa.2026.161007

FIRM 55

SR PaNet [#4GEHA L RIA L. N PAN @R, ZATH FPN A3, Joahpiid g — iy
I YOLOVS FF USRI S HFIEAE B o N T RRIIE AN AR, AR SCONHT I MR BT U R AIE 4 3 W 4%
(BiFPN)I#f A\ YOLOVS8 #74Y, BiFPN £ 8(c)ffi7x. BiFPN Z244iiid 5] A4 FPN + PAN HESE [
ANEAME RERR AT . IR LEHT B B AR T Wb M CR AT AN G I B 4 B v S B SR GG R AIE 3 X 28 3E N A
T [26].

UeAh, FECCEERRBR ,  RIEVEHLKE P2 EE IR BRI b, 3X P2 J2 DLHY R BURHAE IR
FR /NPT NRFE, BB Sk . X LI 5R ThREAT R H 1) BTN 7 A8 py 47
BARHIES SRS Bt B T m AN BERRREEE . 7RI 8 rhARZhHh R IR IR S 5R ) 4544«

4. KBERS 5
4.1. BURER R ERPEMIE

T FC IR A A T 20 T4 B By 5 4 el Al T e B R R A IR A R AR Wil 9 s, $E e
B L2 B SR~ & R R ARSI B, R R 12000 5K, J5E46 B 5 #1309 4000 x 3000 ]
BUR, BB Ry oeiE . ROGRL, ™ 3 R, R 4000 5K, R e B BL 7:2:1 BRIy
FeBIBENL R 2 IR SR TE4E . MdE.

Figure 9. Neck feature network design
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4.2. SRR RINEGEH
1. HEFE:

A A SR R — e LA, Seie I 2 Intel(R) Xeon(R) Gold 5320 CPU @ 2.20
GHz Al NVIDIA A100-PCIE-40GB GPU K ZR AR Ee . 158 1 fiow:

Table 1. Experimental environment

#z1.REER

Configuration Environment
Operating System Ubuntu 20.04.4
Accelerated environment CUDA 114

Deep learning framework

Programming Language

PyTorch 1.13.1
Python 3.8.10

A S v R TR P 0 R AR TR B 2R3 Bt AT I 45,

Table 2. Training parameters

2. N&EsH

W 2 Fios:

Parameter Value
Epochs 300
Batch 16
Image size 640 x 640
Workers 8
Learning rate 0.001
Optimizer AdamW
NMS IoU 0.7
Weight-Decay 0.0005

4.3. LHEATS
4.3.1. N&ERE

DG e, % ST — BN 28, (RS AIREEE . 0 A PR RE E N Kah B 2 640 %
%, REEIGI K, RIONEE N 16, FEIIGRR, AT R E 50, B ATH O
7E 50 A epoch PHEHFRIHBGE, MIILHATLLE, epoch BEA 300, F1KEBIII ML AELFIH
AdamW FREHESILN, FHEIREY 0,937, BETEMARON Se-d. WA TR BN 0.001, B
WIS S 0.4, SR T SIHE AR, TR JUAS 505 YOLOVS IS Helids— 5.

TEREBE R, T KRB 640 RR IR AN YR, FINRE T RIR R K S .
L R ML 5 S 0,001, A5 HAEOU)RIERLGEA 0.7, ZEREIIRE, L T #— GPU R, IF
EUHR N TR 1, oot A B AT IR AL
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4.3.2. FNETR
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AP=%(R, -R,) P, (6)

n

mAP@0.5 & IoU G FHE 9 0.5 I (1) AP H. THE M 0.5 ] 0.95 BIEEA~ oU s FHEGE =K K 0.05)
1) AP fH, FFHCFIME, 34 mAP@0.5:0.95 .

AP,

AP,
mAP@0.5:0.95 = ToU=05 T

loU=0.55
n

n MEA 100 @ EH mAP@0.5 1 mAP@0.5:0.95, ASCVPAL TAEABLIE ST ToU BRI T R
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4.4. SCIEXIEE
4.4.1. JHRESZIENTEE

+oet AI)IUU:OSS (7)

Table 3. Training results of ablation experiments

2 3. JHBASZIEXTEE

Model GSConv DySample P2 BiFPN mAP@0.5 mAP@0.5:0.95
YOLOv8m 0.941 0.779
YOLOV8-A V 0.951 0.78
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YOLOV8-A J J 0.95 0.781
YOLOV8-A J J J 0.975 0.794
YOLOVS-A J J J J 0.982 0.806

N TR N I 54 5 DU AN [ L o P 2 A R M RE B, R SRR S AT T LSRG . A
SEIGHRVS B A IS R AR, [ R A P adb A7 LT, 45 e 3 B . IR IR T LA H,
HER GSConv B GBI REI R A T A MIRE . X — Mok ks GSConv BEEHR/ERFAE AL B AR i
07 ™ R AL . Dysample _FSRARZBEE K 5] NI 5 1 XHIa B R v = AR 0N TS R, R PR
RIS, TR A IR N P2 Kl Sk J5 B BT TR, SR WA Sk A A S T a5 R
il FRRT LA Z8OR RS DUARE P J LA ARe 1, AT 4 e H AR (RS FE . AL YOLOVS-A AN R 1) RN L mp
PAE AR T AT A S (Y ) mAP EAE 2R b B AR 3T, I B T3 K 1, YOLOVS-
A BB H ARSI AR B B . — BOR L, RIS I B R B (2 R R, (HLR &R,
YOLOVS-A HEAY AT 1 e B A Aar il 25 2R

4.4.2. SHAEERMER XL

N T VPGB 0 D7 VA TE AN TS B B H AR AN A PERE, #4ASCJ7 72 Faster R-CNNL YOLOV3
[27]v YOLOvVS5. YOLOv6 [28]455 H i F i () B sl Eyk b AT L, 65 sk AR 4 FF RS, ¥
SO BRI 4 O 2 RIS ECPAME, B R R 2, HRRSEIR S RIRE Y, BT AR
HEZ ., mAP@O.5 ZE M HE bR R 5 SOk A Rt o AN BB AG I 45 SN 4 FTvR o AN [ FR S 7R
SR, ARSI B R AN SOG40 LR U VR RS YOLO &4 H AR I R KA A%
JiE. 7EHT YOLOvS L3 T YOLOVS-A. Frigihi ] YOLOVS-A 1] FPS fik 1546 YOLOv8m, {HA3%ALL
oA SRR B, YOLOVS-A 7EZ5A1A dot [ S BLE T Py mAP 2507 AL T HAh 751k,
TXUF B AR SC BB IS T A NI R B 45 F o R e 78 ™ s BRIA I HE A 22 (P) BAR T At v, B
YOLOV8-A fEMEHAT S5 B b (/N B ARAS I 77 T B % BRI & X O BB OIE I S5 45 YOLOVS
Y P A R AZ SO BT P ) PR R U A P AR5 8 e B2 7 T A2 1 SEBR A P st R R, B
FH 24 PR A T R 512 FH

AN, nE 11 BRI R R gt Bt mAP@0.5: 0.95 HhZRE], o rb S [t g th 4R AR 2 A [
MR, H5HABBIRAHEL, YOLOVS-A BAIYEEEAN I LR FE H 7E mAP@0.5:0.95 J7 UG A PRFFIR# . 1X
U] YOLOVS-A HAIE S Bl ™ sCiR 0 7 ThI 2 B HH ot ) L ARAS I B 77, AT SR 159 B8 s R AE R 28 . BEAk,
YOLOVS-A RN R I H bR ) 1 B8, 17 HLAE I ik A2 IS SIGH g FE e

Table 4. Effect of running each YOLO version on industrial datasets
4. ATAHIESE XD YOLO lRABIEITHR

P
Model Single  Double AP R mAP@0.5 mAP@0.5:095 Paremeters time(ms)
aperture  aperture
Faster R-CNN 0.633  0.815 0.856 0.768  0.722 0.813 0.756 139.24M 16.8
YOLOv3m  0.364 0.753 0.99 0.702  0.713 0.706 0.6 103.69M 6.7
YOLOv5Sm  0.819 0.989 0.989 0.933  0.923 0.942 0.775 25.06M 12.9
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R
YOLOvbm  0.813 0.988 0.99 0.93 0912 0.938 0.776 51.99M 4.5
YOLOvVS8s 0.786 0.985 0.9 0.89 0.766 0.763 0.754 11.13M 1.9
YOLOv8m  0.862 0.992 0.988 0.947  0.889 0.931 0.774 25.86M 3.8
YOLOvSI 0.822 0.993 0.991 0.935 0.915 0.933 0.779 43.61M 13.5
YOLOv8x  0.835 0.996 0.99 0.94 0.918 0.942 0.782 68.15M 23.2
YOLOvV8-A 0.92 0.998 0.996 0.971 0.97 0.982 0.806 23.6"M 3.7
YOLOV9 0.859 0.94 0.996 0.932 0.902 0.949 0.775 25.53M 9.5
0.8
K061
=)
i
=
® 044
% — YOLOVS-A
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Figure 11. Training effects of different YOLO versions mAP@0.5 0.95 curve chart
B 11. A[E YOLO MEAMZHR mAP@0.5:0.95 iz

4.4.3. HEBIMUHBRIIEL

\J

(a) Original Images

(¢) Detection results of YOLOVS-A

Figure 12. Comparison of model detection results
12. Tl ##EE £ YOLOV8 #1 YOLOVS-A # IR
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