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Abstract

In cloud data centers, accurately forecasting the number of arriving user tasks over a future period
and timely adjusting resource allocation are essential for improving resource utilization and de-
creasing energy consumption. To address the high dynamism of cloud users’ task submission pat-
terns and the issue of error accumulation commonly encountered in long-term forecasting, this pa-
per proposed a method for cloud task arrival prediction with Periodic, Trend, and Fluctuation fea-
tures. The method first constructed a single recurrent periodic pattern from the original time series
to explicitly capture stable periodic behaviors. Meanwhile, the paper proposed a Period-Attention
mechanism that aggregates long-term subseries through the explicit period length, thereby enhanc-
ing the representation capability of periodic components. Additionally, a gating mechanism is in-
corporated to dynamically regulate the influence of periodic information on the prediction results.
Finally, the Transformer architecture was utilized to method and forecasted the Trend-Fluctuation
components after removing the periodic components, achieving the prediction of the number of
cloud tasks. Experiments are conducted on the Alibaba Cluster Trace GPU v2020 dataset and the
results demonstrate that the proposed method consistently surpasses several baseline models in
both long-term forecasting accuracy and stability, showing strong potential for practical application
in cloud task prediction scenarios.
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Figure 1. Number of tasks submitted in one week
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Figure 3. The periodic attention mechanism
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Figure 4. Loss curves of training and validation sets
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Table 1. Impact of different cycle lengths C on prediction performance
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Figure 6. Comparison of learned daily periodic pattern and original task distribution
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Table 2. Prediction results of different models
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