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Abstract

To address the issues of low efficiency, high energy consumption, and pesticide waste in multi-UAV
cooperative weed control in large-scale field environments, this study proposes a task allocation
and path optimization method integrating farmland rasterization, weed zone clustering, and an im-
proved Discrete Particle Swarm Optimization (DPSO) algorithm. First, the farmland is mapped into
aregular numerical matrix through grid processing. Combined with the HDBSCAN algorithm, weed
areas are spatially partitioned to balance weed density within regions and drone payload capacity.
Second, an improved Vehicle Routing Problem (VRP) model is constructed, considering drone bat-
tery constraints and spray tank capacity, with the optimization goal of minimizing total system en-
ergy consumption. Finally, a DPSO algorithm incorporating rejection operators and inverse muta-
tion strategies was designed to perform two-stage path planning: inter-area route optimization and
intra-area weed zone access sequence optimization. Using the DJI T40 drone as the experimental
subject in a 1000 m x 1000 m simulated farmland, tests demonstrated that this method achieves
precise “straight-to-weed-zone” operations, ultimately fulfilling energy-saving, efficient, and envi-
ronmentally friendly weed control objectives.
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Figure 1. Farmland image
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Figure 2. Gridding results for weedy areas in farmland

2. REAREXMZ LR

3.4. ZEREEAR

A 1 B 4 5 K B AR AL 5 AR — A BOR A, L PR3 £ 4L 0 S
WK, B UPARRE. AL RUES AL, Sl A 8 HUR B B TSPy . DS 740
S 05 KR L S IT
3.4.1. ZFEXEH

i PR SRR S I AT A B, A B A SR I R IR R Bk, 3R

DOI: 10.12677/csa.2026.161021 262 THEAURF 5 R


https://doi.org/10.12677/csa.2026.161021

T

FHAT —HB o IR AL B, P X R S I T, i AIaL AR L TL R, T AR . AL AL
BB TR B BRI S (R ) B AR L AR, KNS B R R MR ISR 1L R
Rt HAEANE ¢ WITA 5L p AARSRIREIER ¢ OO RIBR R, 5 50 o BRI T ISR IRZ AL pi
LF R TR RS R ), THEIL R RITERR ¢ R n SRR co Bl na, 35 mi > na,
WK Z 1L pi PRI con PTG O BRAE RS TR rhC AR ARG DX 2% B XA J LT,
TR SEIX A B AR . [ 3 TR BRI

IREEX i SR LR

>
e
;)

UG I
P A N R PP LSOO WN—O

20 * *

1240 *
H

h *
$460 N

A
FRINERNE e enans

80 N

100

0 20 40 60 100
R X4 (5D
Figure 3. Weed point distribution and clustering results

B3 RERSHSREER

3.4.2. XIBHBEERR

DX A AR

S
*
S
+
-

OONDUEWN—O =

20 e X\ *

}ﬁ<40 I
H
i *

1460 .

—

*
J
R e R S

[
=W — O

BRS
Soo

=B

8
il
(o]

80 3

0 20 80 100

40 60
A X A (B

Figure 4. Inside-cluster path planning results

E 4. FERBEARKIER

DOI: 10.12677/csa.2026.161021 263 THEAURF 5 R


https://doi.org/10.12677/csa.2026.161021

Fr

PABRSEIX IO AL, M i TSP AR, DURSRHLOYIX IR N I R, DA ARSI 40 H DX A 2
DXUTTRY,  [RI TF SE AP AR X2 ST AR . 1] 4 i AR R 45 SR il

3.4.3. XK
DA A0 1T i, MR SO 2R A% ) L (VR PR A, @it eidE DPSO AR AL e A BT B X I i)
WG, R4 NEBRB K (K <<n). &5 AFEEIRISE BRdl.

% TE NP [T 55 23 Fie S A A Ak

0 \ E% 1
155 2
{£%5 3

200 " > g \ ——£% 5

{£% 8

N\ {75 9
24001/ N {E% 10
- A\ o | 1
B - =) 125 12
iy M ga f£% 13
2600 9] {£% 14

800 =

1000 =
0 200

400 600 800 1000
A X A (m)

Figure 5. Cluster-to-cluster path planning results
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Figure 6. Improved DPSO algorithm convergence curve
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