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摘  要 

针对大田环境下多无人机协同除草的效率低、能耗高及农药浪费问题，提出一种融合农田栅格化、杂草

区聚类与改进离散粒子群算法(DPSO)的任务分配与路径优化方法。首先，通过栅格化处理将农田映射为

规则数值矩阵，结合密度聚类(HDBSCAN)算法对杂草区进行空间分区，平衡区域内杂草区密度与无人机

负载；其次，构建考虑无人机电量与药箱容量约束的改进车辆路径问题(VRP)模型，以最小化系统总能

耗为优化目标；最后，设计含排斥算子与逆转变异策略的DPSO算法，分两级完成区域间路径规划、区域

内杂草区访问顺序优化。以大疆T40无人机为实验对象，在1000 m × 1000 m模拟农田中进行测试，经

实验证明，本文方法能够实现“直奔杂草区域”的精准作业，最终达成节能、高效、环保的除草目标。 
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Abstract 
To address the issues of low efficiency, high energy consumption, and pesticide waste in multi-UAV 
cooperative weed control in large-scale field environments, this study proposes a task allocation 
and path optimization method integrating farmland rasterization, weed zone clustering, and an im-
proved Discrete Particle Swarm Optimization (DPSO) algorithm. First, the farmland is mapped into 
a regular numerical matrix through grid processing. Combined with the HDBSCAN algorithm, weed 
areas are spatially partitioned to balance weed density within regions and drone payload capacity. 
Second, an improved Vehicle Routing Problem (VRP) model is constructed, considering drone bat-
tery constraints and spray tank capacity, with the optimization goal of minimizing total system en-
ergy consumption. Finally, a DPSO algorithm incorporating rejection operators and inverse muta-
tion strategies was designed to perform two-stage path planning: inter-area route optimization and 
intra-area weed zone access sequence optimization. Using the DJI T40 drone as the experimental 
subject in a 1000 m × 1000 m simulated farmland, tests demonstrated that this method achieves 
precise “straight-to-weed-zone” operations, ultimately fulfilling energy-saving, efficient, and envi-
ronmentally friendly weed control objectives. 
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1. 引言 

农业作为国民经济的基础性产业，其生产效率与质量直接关系到国家粮食安全与社会稳定。在农业

生产环节中，杂草防除是保障作物正常生长、提升产量的关键步骤。长期以来，传统人工除草方式凭借

操作灵活、对作物损伤小等特点在农业生产中占据重要地位，尤其在小面积、作物密集种植区域，人工

除草能够精准识别并拔除杂草，最大程度减少对作物的干扰。然而，随着农业规模化发展，传统人工除

草逐渐暴露出效率低下、人力成本高、作业周期长等问题，在大面积农田除草作业中，难以满足时效性

要求，且人工除草效果易受作业人员经验、体力等主观因素影响，除草质量稳定性较差，已无法适应现

代化农业生产的需求[1]。 
为解决传统人工除草的痛点，无人机技术凭借其作业效率高、覆盖范围广、适应能力强等优势，逐

渐应用于农业除草领域[2]。无人机除草通过搭载喷洒装置或除草机械，能够快速完成大面积农田的除草

作业，显著提升作业效率，降低人力成本。相较于传统人工除草，无人机除草无需作业人员进入田间，

有效避免了田间作业对作物的踩踏损伤，同时能够根据农田实际情况灵活调整作业参数，在一定程度上

提升了除草作业的灵活性[3]。 
早期无人机除草多采用“地毯式”化学除草作业模式，化学除草虽曾被视为高效方案，却暗藏多重隐

患[4]。长期大量喷施除草剂会直接杀灭土壤中的有益微生物，破坏土壤生态结构，进而影响作物品质；过
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量药剂还会通过地表径流渗透污染水体，造成生态失衡，同时可能导致杂草产生抗药性，形成“越喷越滥、

越滥越喷”的恶性循环。在山地丘陵等复杂地形区域，传统机械除草难以施展，人工与化学防治的弊端更

为突出，严重制约了农业绿色可持续发展。无人机精准除草作为智慧农业的重要应用方向，可通过定向施

药减少农药残留与环境影响，但其作业效率与多机协同能力仍需提升[5]。目前，相关研究仍多聚焦于农田

分块后的全覆盖路径规划，如文献[6]-[10]提出的方案都是以全覆盖路径为基础，通过不同的算法，以不同

的指标为目标生成的路径，包括减少架次、减少能耗等。而文献[11] [12]提出的方案则是在规划全覆盖路径

的基础上，考虑了可能存在障碍物的情况。为了针对复杂环境中的农田，文献[13]-[15]考虑了三维、边界复

杂或农田离散等情况，通过针对性的智能算法设计，提高了复杂情况下农田路径规划的鲁棒性。 
然而，现有方法在一定场景下依然存在显著局限性，如：大田环境中杂草多呈零散簇状分布，传统全

覆盖路径包含大量无杂草区域飞行段，导致无人机能耗冗余与作业时间延长。同时，多无人机协同过程中

缺乏对电量、药箱容量的动态约束，易出现任务负载失衡。为此，本文提出多无人机协同除草任务分配方

法，旨在针对大田环境下杂草零散分布时多无人机的任务分配问题与路径规划问题。本文的思路如下：1. 
通过杂草区聚类，使零散簇状分布的杂草按聚类的簇统一规划，从而缩减路径规划维度，达到避免杂草数

量大带来的智能优化算法高维计算开销过大的问题。2. 对分好的簇执行两级的任务分配与路径规划，簇内

构建旅行商问题(Traveling Salesman Problem, TSP)模型，以最近邻算法快速得到路径与消耗，簇间构建改进

车辆路径问题(Vehicle Routing Problems, VRP)模型，以改进离散粒子群算法求解得到最优簇访问顺序。3. 构
建模拟农田数据进行仿真实验，将本文方法与传统全覆盖施药方法进行对比，验证本文方法的可行性。 

2. 多无人机协同除草问题建模 

2.1. 问题描述 

设定大田环境下，单个作业系统覆盖范围由无人机最大飞行半径确定，系统内包含 1 个配送中心(无
人机起降点)与 m 架同型号无人机，记无人机集合为： { }1 2, , , mU U U U= ⋅⋅⋅ ；区域内存在 n 个有杂草的区

域，记杂草区集合为： { }1 2, , , nT T T T= ⋅⋅⋅ ，每个杂草区需由 1 架无人机完成 1 次定向施药，无人机作业后

返回配送中心。 

2.2. 数学模型构建 

以系统总能耗最小化为优化目标，综合考虑无人机电量约束与药箱容量约束，构建改进 VRP 模型如下。 

2.2.1. 目标函数 

1 0 0
min

m n n
k k

ij ij ij
k i j

F c Ex
= = =

= ∑∑∑                                    (1) 

式中： ijc 为杂草区 iT  ( 0T 为配送中心)到 jT 的欧氏距离(单位：m)； k
ijx 为 0-1 决策变量， 1k

ijx = 表示无人

机 kU 从 iT 飞往 jT ，否则为 0； k
ijE 为无人机 kU 从 iT 到 jT 飞行段的能量消耗，其值等于此时无人机能耗功

率 P 和该路程飞行时间的乘积；而无人机的能耗功率 P 由随施药过程递减的实时药箱重量 k
ijQ  (单位：kg)

根据如下公式计算得出[16]： 
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式中：n 为无人机旋翼数量，δ为旋翼剖面阻力系数，s 为旋翼实度，ρ为空气密度，A 为旋翼面积，W 为

无人机自重，CT 为旋翼推力系数，V 为无人机飞行速度，k 为诱导功率的增量修正因子， 0v 为悬停下平均

旋翼诱导速度，SFP||为水平机身等效平板面积。 

2.2.2. 约束条件 
1) 每个杂草区仅被 1 架无人机访问 1 次，确保施药无遗漏、无重复： 

1 0
1  1, 2, ,

m n
k
ij

k i
x j n

= =

= ∀ = ⋅⋅⋅∑∑                                   (3) 

2) 每架无人机从配送中心出发，完成任务后返回配送中心，中途不返航： 

0 0
0 0

1, 1  1, 2, ,
n n

k k
j i

j i
x x k m

= =

= = ∀ = ⋅⋅⋅∑ ∑                               (4) 

3) 无人机在作业过程中药量消耗不超过药箱最大容量 maxQ  (单位：L)： 

max
0

1, 2, , ; 1, 2, ,  
n

k
j ij

j
q x Q i n k m

=

≤ ∀ = ⋅⋅⋅ ∀ = ⋅⋅⋅∑                           (5) 

式中： jq 为杂草区 jT 的施药量(单位：L)，由杂草覆盖面积与药剂浓度确定，本文取 0.15L 0.3Ljq = − 。 
4) 无人机的总能耗不超过电池最大容量 maxE  (单位：J)： 

max
0 0

1, ,  2,
n n

k k
ij ij ij

i j
c x E E k m

= =

≤ ∀ = ⋅⋅⋅∑∑                              (6) 

式中： maxE 由电池容量与电压计算， max 3600C UE = × × ；其中，C 为电池容量，单位：Ah；U 为电池电

压，单位：V。 

3. 多无人机协同除草问题求解算法设计 

3.1. 粒子群算法基础 

粒子群优化算法(PSO)由 Kennedy 和 Eberhart 于 1995 年提出，通过模拟生物群体协作行为搜索最优

解。算法中每个粒子对应解空间中的 1 个候选解，通过个体历史最优位置 pbest 与群体全局最优位置 gbest
调整飞行速度与方向，经典更新公式由惯性项、个体学习项和社会学习项构成，公式为： 

( ) ( )1
1 1 2 2

t t t t
i i i i iV V c r pbest X c r gbest Xω+ = + − + −                         (7) 

1 1t t t
i i iX X V+ += +                                       (8) 

式中：ω为惯性权重， 1c 、 2c 为学习因子，分别表示个体学习项与社会学习项的权重， 1r 、 2r 为[0,1]区间

随机数， iV 、 iX 分别为粒子 i 的速度与位置[17]。 
标准 PSO 适用于连续域优化，而多无人机除草任务分配为离散组合优化问题，需通过离散化改进

(DPSO)适配解空间特性。本文采用“重构离散速度更新公式”的改进路线，直接在离散空间定义粒子位

置、速度及运算规则[18]。 

3.2. 离散粒子群算法改进 

3.2.1. 粒子编码定义 
粒子位置 X 为 n 维整数向量， [ ]1 2, , , nX x x x= ⋅⋅⋅ ，其中 { }1,2, ,ix n∈ ⋅⋅⋅ 且无重复，每个元素对应杂草
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区编号，向量顺序表示无人机访问杂草区的次序；如需兼容多无人机场景，只需通过在适应度函数中添

加根据约束划分不同无人机的任务段的部分即可(具体见 3.5 适应度函数)。 
粒子速度 V 为 n 维整数向量， [ ]1 2, , , nV v v v= ⋅⋅⋅ ；其中 0iv = 或 { } ( )1,2, ,  i i iv n v x∈ ⋅⋅⋅ ≠ ， iv 表示位置

ix 需与 i ix v= 交换以实现位置更新。 

3.2.2. 离散运算规则 
移除经典 PSO 中的惯性项(由后续排斥算子替代)，仅保留个体学习与社会学习项，公式为[19]： 

( ) ( )1 2pbest gbestV c X X c X X= ⋅ − + ⋅ −                              (9) 

式中： pbestX 为粒子个体历史最优位置， gbestX 为群体全局最优位置；“−”为离散减法运算，规则为：若

X1 与 X2 对应维度值相等(X1i = X2i)，则结果向量对应维度为 0，否则为 X2i，即： 

1 2

2 1 2

0,
,

i i
i

i i i

x x
v

x x x
=

=  ≠
                                   (10) 

(9)式中，“·”为速度数乘运算，规则为：以概率 c 保留速度维度值，否则置 0，即： 

1
2

,
0,

i
i

v rand c
v

rand c
<

=  ≥
                                   (11) 

(11)式中， [ ]0,1c∈ ，rand 为[0,1]的随机数；在(9)式中“+”为速度加法运算，规则为：优先保留 V2 中的

非零值，V2 中为 0 的维度保留 V1 的值，即： 

2 2

1 2

, 0
, 0

i i
i

i i

v v
v

v v
≠

=  =
                                    (12) 

上式表示位置与速度的加法运算表示粒子移动，规则为：若 vi = 0 或 vi = xi，则位置维度值保持不变；

否则将 xi 更新为 vi，即式(13) [20]： 

, 0 or 
, 0 and 

i i i i
i

i i i i

x v v x
x

v v v x
= =

=  ≠ ≠
                               (13) 

3.2.3. 优化算子设计 
为避免种群多样性下降导致的早熟收敛，当粒子与 pbest 或 gbest 的相似度超过阈值(本文取 80%)时，

触发排斥算子：对位置中与 pbest 或 gbest 相同的维度，以概率 0.3 随机生成新速度，按位置更新规则调

整粒子位置，增强种群探索能力[21]。 
为提升局部搜索精度，在粒子更新后引入逆转变异：随机选取位置向量中的两个索引 j1、j2 (j1 < j2)，

将 j1 至 j2 区间的子序列反向插入原位置。该策略可快速消除路径交叉，缩短局部路径长度[22]。 

3.3. 农田栅格化 

为降低地理空间数据复杂度，将如图 1 农田中部分区域转换为规则栅格矩阵。 
作业范围根据无人机最大飞行半径 R (单位：m)划分，取作业区域为正方形，边长 2L R≤ ，确保无

人机可到达区域内任意点并返航。 
栅格大小根据无人机最大有效喷幅 D  (单位：m)确定，取栅格边长为 0.9 0.95D∼ ，确保无漏喷且施

药精准。 
如图 2 所示为农田栅格化的示例。 
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Figure 1. Farmland image 
图 1. 农田图像 

 

 
Figure 2. Gridding results for weedy areas in farmland 
图 2. 农田杂草区栅格化结果 

3.4. 多级任务规划 

农田范围内杂草区数量即使在农田栅格化后依然是一个较大的数，直接使用算法进行规划的计算开

销巨大，运算时间几乎不能忍受。采用多级任务规划，先将杂草分块后再分别对区域内、区域间进行规

划能够大幅减少计算开销。 

3.4.1. 杂草区聚类 
使用聚类算法对杂草区进行空间聚类，将农田内杂草划分出区域。为确保聚类结果符合要求，对聚
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类进行一部分后处理，平衡区域紧凑性与负载均衡性，如孤立点处理、边界调整、中心生成。孤立点处

理将计算识别到的噪声点(零星杂草)至所有簇中心的距离，将噪声点合并至距离最小的聚类簇；边界调整

将计算每个簇 ci 内所有点 pi 对相邻聚类簇 cn 中心的距离，若与某簇 cn 距离小于两倍邻域半径则记 pi 为

边界点(领域半径由算法结果给出)，计算边界点所在簇 ci 的点数 n1 与相邻聚类簇 cn 点数 n2，若 n1 > n2，

则将该点 pi 分配至簇 cn，平衡负载；中心生成使每个聚类的中心坐标取该区域内杂草区的几何重心，用

于后续区域间路径规划。图 3 为聚类结果示例。 
 

 
Figure 3. Weed point distribution and clustering results 
图 3. 杂草点分布与聚类结果 

3.4.2. 区域内路径规划 

 
Figure 4. Inside-cluster path planning results 
图 4. 簇内路径规划结果 
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以聚类区域为单位，构建单 TSP 模型，以聚类中心为区域出入口点，以最近邻算法给出区域内杂草

区访问顺序，同时计算好本区域药量消耗。图 4 为簇内规划结果示例。 

3.4.3. 区域间规划 
以聚类中心为节点，构建改进车辆路径问题(VRP)模型，通过改进 DPSO 优化无人机对聚类区域的访

问顺序，粒子维度为聚类数 K  ( K n<< )。图 5 为簇间规划结果示例。 
 

 
Figure 5. Cluster-to-cluster path planning results 
图 5. 簇间路径规划结果 

3.5. 适应度函数设计 

适应度函数直接映射目标函数与约束满足度，公式为： 

1 2fitness F E Qλ λ= + ⋅∆ + ⋅∆                                 (14) 

式中：F 为目标函数值(总能耗)；ΔE 为电量超载量( ( ), Emax 0 k k
ij ij ij maxE c x E∆ = ∑ − )； Q∆ 为药量超载量

( ( )max 0, k
j ij maxQ q x Q∆ = ∑ − )； 1λ 、 2λ 为惩罚系数，本文分别取 100、50，确保不可行解的适应度值显著

降低。 
在多无人机场景时，调用适应度函数需加入任务的动态划分。初始时最多 m 架无人机的任务队列为

空，遍历位置粒子 X 的每一个元素 Xi，尝试将 Xi 加入无人机 k 的任务队列(0 < k ≤ m)，若加入后计算出

第 k 架无人机的剩余能量不足以完成任务，则放弃元素 Xi 的加入，转而将 Xi 加入至无人机 k+1 的任务队

列中，若 k 已等于 m，则新建第二架次任务，直到所有元素都有无人机执行。 

4. 仿真实验与结果分析 

4.1. 实验设置 

4.1.1. 硬件与参数 
实验基于 Intel Core i9-12900K 处理器、32 GB 内存的计算机，软件环境为 Python3.11；无人机参数

基于大疆 T40：电池容量 C = 30000 mAh，电池电压 U = 52.22 V，Emax = 30000 × 52.22 × 3600 × 10−6 ≈ 
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5640 kJ；药箱容量 Qmax = 40L；飞行速度 7 m sv =  (离地 25 m 时)；飞行半径 2000mR = ；取边长 1000mL =

的正方形农田范围为实验场地。 

4.1.2. 模拟农田构建 
采用基于密度的 K-means 聚类算法生成杂草区分布：在 1000 m × 1000 m 农田范围内随机生成

2000 个“潜在杂草区”，聚类为 40 个簇(杂草聚集区)，簇内点密度为 30~50 个/簇，簇外点设为作物

/空地。 

4.2. 实验设计 

基于大疆 T40 参数( 11mD = )，取栅格边长为 10 m，即农田对应栅格数量为100 100× ，标记栅格内

有杂草的区域为杂草区。 
本文设计在农田中进行对比实验。对比组采用传统全覆盖路径规划，在农田栅格化后，以农田一角

为起点，以之字形路线遍历农田，在药量或电量不足时返航回起始点充能后再次出发返回断点继续工作

直到任务完成。实验组使用本文方法，在农田栅格化后，先使用 HDBSCAN 聚类算法对农田杂草进行分

块(聚类参数设置 min_cluster_size = 15，min_samples = 15，max_cluster_size = 100)，得到农田杂草区，再

使用本文改进的分级 DPSO 算法对杂草区进行任务规划，得到多无人机任务路径。 

4.3. 实验结果与分析 

4.3.1. 单指标对比 

Table 1. Single metric comparison results 
表 1. 单指标对比结果 

指标 传统全覆盖方法 本文方法 优化幅度 

总能耗(kJ) 3256 1995 38.7% 

农药用量(L) 3714.3 742.9 80.0% 

任务完成时间(min) 48.2 34.0 29.5% 

 
由表 1 可知，本文方法在各指标上均显著优于传统方法：总能耗降低 38.7%，源于路径中无杂草区域

飞行段的减少；农药用量减少 80.0%，得益于定向施药避免的冗余喷洒；任务完成时间缩短 29.5%，归因

于多机负载均衡与路径优化。 

4.3.2. 算法收敛性分析 
改进 DPSO 的收敛曲线如图 6 所示，改进 DPSO 在迭代 300 次时收敛至最优解，而标准 DPSO 需迭

代 30 次收敛，且最优适应度值高于改进算法(本文中适应度越低越好)。这表明排斥算子与逆转变异策略

有效提升了算法的收敛速度与解质量，避免了早熟收敛。 

5. 结论 

本文提出的多无人机协同除草任务分配与路径优化方法，通过农田栅格化简化地理数据处理，

HDBSCAN 聚类缩减路径规划维度，改进 DPSO 实现多级任务优化，有效解决了传统方法中能耗高、效

率低、负载失衡的问题。实验结果表明，该方法可显著降低能耗与农药用量，缩短任务完成时间，提升

多机协同效率，为大田环境下的精准除草提供了可行技术方案。 
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Figure 6. Improved DPSO algorithm convergence curve 
图 6. 改进 DPSO 算法收敛曲线 

5. 结论 

本文提出的多无人机协同除草任务分配与路径优化方法，通过农田栅格化简化地理数据处理，

HDBSCAN 聚类缩减路径规划维度，改进 DPSO 实现多级任务优化，有效解决了传统方法中能耗高、效

率低、负载失衡的问题。实验结果表明，该方法可显著降低能耗与农药用量，缩短任务完成时间，提升

多机协同效率，为大田环境下的精准除草提供了可行技术方案。 
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