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Abstract

In recent years, there has been a growing interest in using machine learning, particularly deep
learning techniques, to address mathematical problems. Learning to Optimize, a method thatlever-
ages deep learning to solve optimization problems, has attracted increasing attention. In current
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research, the exclusive use of LSTM models remains the predominant choice. While LSTM models
can effectively capture historical information, their ability to handle interaction between infor-
mation is insufficient. Therefore, we propose adding a multi-head attention mechanism to the out-
puts of the hidden layer to enhance the fusion of information. We also replace the LSTM with a light-
weight GRU model, resulting in an even reduction in the number of model parameters. Experimental
results demonstrate that the algorithm not only achieves faster convergence but also exhibits strong
generalization capabilities.
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1. 5|8

FE G AR AL AR U & I T B S A B A 1T e 27 SJARALAE Rt 1% — A% Gy 21K
TAER SR . 2 IRACKAL GL AR AL ) BN A 22 ST 5%, @i Fa e B IR R 45 e SR 48, A Bhig
FE5 5] B BTGB 1] . SRR 2 2] 7 1A REAE 50 43 1) 0 S B0 o R A S5 2 s vy ol i PO A
Bk T SEAR R . A FRE MRS R

oRAER 25 H . A TR g, w7 AERERAE R, ¢ RRIBIHRIIZR 5 2 S5
(E BTN ¢ FETF T VR 18) o %90 T8 45 HEF D KRR Hh #4048 i T X e e S A i e . LA
SHIbRAERE, Hz MR e v R e AR, (AT M0 B SRR T R RNER, HH
Xof 5 SIARAC I ) R P A T R s . LSS VR 2 T BU TR 2 A A AR E P (Wichrowska 55
N, 2017; Lv &N, 2017; Chen 55N, 2020; Liu %8 A\, 2023). AR, AT AR FH 7%
45 L20-DM.

X =%, —d, (%, VF (x,).0) k=012, W

ARG FEANT —2RH H b R 2L

Horb F () A (o) 35 2 20 R 2R A
F(R"):{r:R” > R|rHEEY, fﬂﬂlﬂﬁ‘]},
{f:]R" > R| 2N, ﬂ%ﬁﬁﬁﬁ/@"Vf(x)—Vf(y)"SL||x—y||, Vx,yeR”}.

F, (R")
% FAEREM #(x), KB E ST
6r(x)={g eR” |r(y)—r(x)2gT (y—x),Vye R"}.
R ML ZE R R SRR R, KRBT N PIR: —RABGIISEE, Bk B R . ISTA 5k,
FISTA 5%, “RITHERIGERIE T 5%, Kb BOvRA A MR BB, — 28T ISTA JEK

LISTA [3], fSERIT, RHIEA SN2 IR 2 4%, 3 —>2 Lin 58 A 51 1 i@ A,
FTHCA AR, 51 S AR, BB S8R T 2 ST i, X RRORFR T S S,
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3 ] 2 2] T Bon i SloR B[4,  Fak A& R .
0 by = LSTM (x,, V(%) Py 13 Bpsmr )
Pi- = MLP (0. y,)
Xpu = prox,, (v — 2V (1))

Vit = X TG o(xk+l _xk)‘

R (PR AR S5 R A TH A BT H 1 25 T K R e A2 W 45 (Long Short-Term Memory, LSTM) [ 45 44
ek, AL T RS, DLE B PO S8R . ARSI F EE DTk W T

1. B 28 S50 B R SR I LSTM #4508 B8 inf A6 1 T 145 96 34 2. 70 (Gated Recurrent Unit, GRU);

2. f£ GRU JE# AN Z E R AL, CURAHE B WAL B

3. T2 TE IND i OOD 153 T, FAl T B2 2 dme R 8

2. BT EEHNGHINERZEEE
2.1. EFMEEEREF

PEIHHZ I 25 (Recurrent Neural Network, RNN)TE Ab 35 A /5 £ 4 i T I 06 5 9 2R slodehs A e 1) i, B
] 7 I KR OC R AR R I [5]. SRR ULIX —ERFE, Hochreiter & Schmidhuber £ H LSTM M 4%, i
IERINT TS BT B T T 18 B B BT A R A (cell state),  SEBIXT SCHERT P45 B I £ 1d 12
Hits[6]; fEULEAE E, Cho Z NiE— ik LSTM £5#, #2H GRU, ¥4IHCIRE S5 BRBOR S &I,
i I 5 T (update gate) 1 EE B | J(reset gate) 4L LSTM [ = [ 1HHLH], (EAREIAZ oI 1H DO HE ) [F) ) 4
IX TR S IR B[]

LSTM A% 0o A AE T8 ik 4 MR S () 2 VAL BN G2 e B2 5 sk, = EEL 1193890 ) R s 4= il S NS
SRR | s AE SOk B A A SRR, A A T K I AR I AR P R B R B 6]
BIZEMAE 4 DTG SEOEREEN T BT ST RS TR, SEERSEIRE K,
THREITERE, JUHAEN PR AR & e EE R m =, 5 ISR SEER . HERRAEIE by
FR) TR R (8]

GRU X LSTM AT T &5 #4b kG fai: — 77T, KA RS SBEUIR S & N B — BRI, w7
RSB EMTCRAAE: BT, B ERH T LSTM Hf N 1153805 1T RIS /E A @ 6 05 S5 2
PRBA Eef), e = )R D7 SR BRGBUIR S X A AR SR s A =, AOREE 2 AT USRS HOERE (7]
XA R4S GRU IZ B LSTM /D 2] 20%~40% [9], THEE 48 53 %, [N #% 7 LSTM
1B IS E I 2 EOUR 2B IS & R [10].

A GRU R ZHET LSTM BRZSHECEH AT N, Rl b, ASCESE 3T N m
2 GRU, FiREN 16 MELE, HETRKM 2 2 LSTM, BEEN 20 2] — BRI T 340E.

2.2. FEDUHEIRR

RISCO WA GRU fEI P @A S BRI S, Fos i L SEBL 7ML R B (in 2
BOEH 51 B BEARA P 51 R HE AN 7 MO e o (ELAE G T2 ST IR AL 1) U, H s B B e 4
AR B A ) AR R 8 R SRS B Z ALl 6455 — GRU M LLi R R MR R . HART 5
HEALARAL I R A DR AR AR IO . H b B RO H e e RS, AR R P (R AR R IR AR & R R (2
AT ACEIED); AR F, ARSI S ZHCERrEX Mt s s 3o
(EAFAE 8 25 22 S (A S DU AR IS RIS AR R LEAIRIN BEE RS 5 ). GRU [N P OB A o7 5%

(L20-PA)
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T CRAMEIEHE B, FLRRGEUIRAS S 1 S AE B R A G R [ AL B N Y, BTk R EA
ANIR 7 S A5 B 5 2 WA 5 R ORHR L, o DA i 280 418 i 4738 5 () ) AR SR A SRR [ 11

RNRAS FIREREE, AR GRU B P @ng2Eat B, #t—0 5] A2 kiER JJ(Multi-Head Attention,
MHA)WLE], A8 I PR B - R B AL RS . 2 Sy A HL s AT e = 702k
(Attention Head) 5HCETHEANLH], GEOSRAEILROESANAL M B IAZ-OFoK, G NZ M F ZARBILE DL
=710

1. e B ORI 2 R : T2 ST SAUAG ) ey, H b R ) AR B 28 PR AR AR TR 3 1/ % DA
AR T RS BRI R R B R), HAEE R PR RN “ R - 2R £
OB ——38 70 A8 T AN 5 AH SR YE A7 AE SR ORI (AN JR B 2 R R I AR SR ), T 08 20 A o D) L e R i) 4
SRR H AR IE IO 1 (AL 2400 [12]. GRU HIRGBUIRS R A2, R RE BB VR
FROEI &, 5 2R YEREB) RS A0 SRR A ) s T 22 SkidE B I o 2 AN iy & 0 ko7 s, A
ER IR RE T — RERRBAFE: B0, &S kL T B 4 1 /i ik, 55—
o MRET2RZESAAEROBUE R, B 202 Sk T P 524, REipsr
PO AR B OIS B 5, AR AT 1a) TN B (it B = IR IR S8

2. BRI ZE R E I SR REIERII I “BRE T - Z8CE8 - RERG” KEA
W, ANFEREARDRE BN EAAEREZ . B, £ e, Bl s s AE O Bk B H
BEEAAL AN SRR LA E , X AR TT 1) )48 S A = T WU AR IR R M B e iR,
L SR AR AR D (Bl H Jr) 50 5 D0 PR 0 R AR ) A U2 B o LA B I AZ 2 [13]. GRU BT 1%L
il B R HENORE “HMME” PP EER, HIXA R R R —— ol v R i AU AL A R P
SEOGHITTEREE, H 52 BIWILARY B R (5 BT, 2 kiEm aALE@E I T “ A (Query) - i (Key) -
{E(Value)” FIAHLRE, BEWs B XOREASPI SLIEAD e E R A DUSRTIEARHIAFEY Query, PiERIE
ARIHRHIER Key, 83 R 5ZAHALE S48 BOm AR TS 38 QIR I PRk v DI oo 2 g 5245 JEL RO ASL FR B K
[14]0 1A TCOACEE 73 B )RS R 07 128 0 S AT AU B BB 7 S2 15 R, A R e A 40, 38710
A7 1 P R AR

3. &R A RIAN TS 5 9E A GRU IR @A T e “ BB (R, JLRRER S
REFET-HI — I ZIAME S50, & 23 “RAIE” W ——B i O kA B, 1 2 AR
A5 14 SR AR 5 NI AR B B PRI P 7 1) ] A Bt I A R 1) 42 SR AR ) o 72 T2 2] R SR AL
4 JRI PR A R R 2 AT i 5 SO AR e N R S de A (I AR E AR R B R AR IMED) . 22 Sk B ) B
RIRH) 4 R A RE . HAETH SRR URER, 2[RI 258 251 20 5 e D st 2089 5CHE, ARk
T — I ZE B, Beie I 5e BB IE AL h SR I4 R AU AU o T, 7 AL B S 240 SRR B A0 ) e
2 S IE R T I I ORI R A A L O RSO S MBT S HORES, B SECE R il e AR kAT,
MR EEOC AL TT 1] o X A4 R A 5 GRU R BRI P O S BUELAN, M “ R iRid it - 2ok
WK 1) e BRI AR 2R

Zib, ZRERNEIFIERN GRU BIEAR, TS0 3157 3 BIE SR AL ) RURe PR RS HE R 7 -
GRU 1 5% i RUi e s AU R 2Rl N PR, 22 ki s DR T s 4e R B i 2 RUZSCHE . SAUE B W
Z SR N A R A R B3R B . I S5 S e SEIL “ N FPARFAE - SRBRAFAE - WMEAFIE” B2 070
AR, AR AR R SR BERS HE IR AN S SR THESAIUAL 10) ) SR AR RCR SRS .

% S B I A B R4 N OBUZ 1 15728 3 B B (Feed-Forward Network, FFN), M5 DL5k 22 1% 42
(Residual Connection)5 /2 J3—1k(Layer Normalization) NAZ Ly, 454G AELRMBEE 5 IE NI Heng, HE—D5%
WHRHIERIERE 1« BARIN S, BHUE 564 2 ki sV i E AR Z TR, 58— 2 5 ReLU 3
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TR NAEZ M, i3 Dropout MG G, SHIGERZDHHEIFZA LayerNorm H—14k; BEJ5
BHE LR®E, HA 2 AR R 0 B2 4 5 BURRAE 23 A bR AL

G IAZ O E RITE T BRZEEFA RS AR FE I 285 TR BE VI 2 o), DR 22 Skl i T R I ) 7
- RERFFEABE R FE AR B R e s 20— A BRI 70 A0 O N S A A%, I B AU 845 ReLU ¥
T BRSO TE SRR AL 0] ) R AR R PR IE AR I SCHE, T Dropout WIIE T B ALK I # £8 Jo PRI &
K, ST IR A RS A3 5 R 2 A RE F . BB He s /v HL s ik, REE R R 2 kiE s N
WD FFE AL b, 58 SRR IE AR 2R PRI o 5 8 A A 2

2.3. REERER
s Y, HRAR S B T LSS PR X, SE IR R (L20-PA) OB 3846 (Model rein-
forcement) A A SAE AN A&, MBSO TEAN S R SC = (4145 A SRR, AR IFEREF LIS Sl .
ol = GRU (x, V(%) Ty 8ony )
Pid, =MLP(FFN(MAH(Ok,¢MAH)a¢FFN)’¢MLP)9
X = prox,, (v =2 Vf (%))

Viwr =X T 64 O(xk+1 =X )

(L20-PA-MR)

2.4, MEEH

FEASC R SRR, RS N AR IR, R SERE, RAER B LA RO, Sk
PRACRD AR B 1, ik RS T REME R

L0, 2000 ()] o

Horpy, FORE k UOERIIERIE, ¢ MBI IISH. FER y, KRBT ¢, BHSAKCEE K AT LR
NGB epoch BIER RS 1 K BRI, 201X K WERIF D NETA DB EASCY LI
8, IR REUEED epoch 1548 100 1K, & 20 R EME I Bt R0,

3. SKOE

AT SEE RS — A2 1 F 52, KA NVIDIA GeForce RTX 3090 (24 GB & 17)#2
PE DS AR TS BT A28 1 14 B8, S5 380405 73 79 4347 4 (In-Distribution, IND)-5 43 4ii #M(Out-of-Dis-
tribution, OOD) 23755 . IND ¥4 KA N TA IR, R m SE A0 Be i) B AR i 564
ULRC, FZATEAMINZE, S IRt R P4l ,  Aefs BEUW R ZRCE T /A T iRt 5 AR
R ; 00D #dhi 4 - %3k k5T BSDS500 [ 151411 UCI Machine Learning Repository 2 #5442 7 /1] Tonosphere
Y5 Spambase W& ML 16], 1ZBEHR/3AT S IND AERREHEFERE E R, HTRIEA s
TERFN AT 5 FIZAGRE )T, SEG A S rid SRtk il R B0 2 AR AR P AR B SE 55t

RS BAEFHEEET GRU + 2 3kiE B R ZF(L20-PA-MR) AL, L LR KT AR A
X LA ZE

1. L F TR 2S: SGD, Adam[17], ISTA, FISTA [18]. %7715 L0040 AT 1) 3= i 3
2, Ref ISR FTHR T VAR TR SR AR B VR RESR T

2. BTS2 L20-DM [2], L20-RNNProp [19], L20-PA [4]. ZEERE T “ I RUE
fds” WA FEIIR, T 3IERTHE GRU + 23kt 8 ) S5 M ERFAE B 5 AR 3 i3S .
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3.1. EESHTRIREEE R

AR R AT A A AP RO, B LASSO [JH(3) 54 LI EM 0256 m ) (4).
LASSO [ V3% 0 B F i e HAE S, S50 7 i AR MBS 2 B TR i« 4 5 S DR T4 B B 5
(ST A L1 IE IR G B P4 A R0, | T SOARBI R | T O I 75 I
FLT P S BN e, % i L1 IR SR SRR, SRS TS e AR A E R

. 1
min F(X) =[x = + 2], (3)
min F(X) = lﬂb,. tog(h(a x))+(1-5,)1og(1-h(a/ x)) |+ 2], )

xeR" m -

3.2. iHRESEIE (SHMELR)

NIGAIE GRU 45 F G (87 1 5 22 Sk B S WL ARV E T, ASHF 74T %5 LASSO 1) #(3) 15 i1 — 2 34 ml bt
A, FEERA L20-PA (T LSTM). fijfti% L20-PA-GRU (LSTM ##f:y GRU) K A& A L20-PA-
MR (GRU + Z3kiFE 1), LIELESMNAND)E 2 MINO0D) 5, O RmE 1. B2 Fixw, 7
Frinr .

AN R, L20-PA-GRU EI &M, L20-PA-MR 53Ul L20-PA MEAEHT. 0 JE R T
L20-PA-GRU LA GRU ## LSTM, SR> 25%~35%, (EARMER . & UCECE 04 A, R
SERIINGE T USRS, LA RS RS — SRR 1 L2O-PA-MR A 51 NVER SIHLEI S Hmg 18, phi<m
RAINERIZL TR, BOMTEARRRS, HMMEaeS L20-PA M4 s st EReHE T 05 X EDE
THEESIWLE AL O E: L20-PA-GRU HJ GRU Vs HEAN e H2 )= 3t , Toi2aid B4 A KA s L20-
PA [ LSTM A /7 @455 5 5%, {7 5045 EAEE 2 e R X, MEFR 4 R MBS /S5 T L20-PA-MR (1) GRU+
R JIEEM, 18T GRU H #EHLAhIN FPRHE, 3 LR E A S5 BRI RE, BV 73 A1 #2473 i
HfaE HA, SEBlZ A6 KR,

25 I, GRU MRERIMEARI TG, AR Z2RkER M ERIEA ARG, IR
W T A ATINZACKIN . IXG8IE T L20-PA-MR BRI & B ——GRU RIS S HUSCE, 1= 1R NZ A5k
R, SEIL “OrAn N R AT SRR XE H bR

10 1
=i L20-PA
—_ | L20-PA-GRU
i 11\ —e- L20-PA-MR
g v
S— )
- ;1
o *s
x 10 «..\
'
ulh s
=y 1III-‘1 k\
B4 ’{u
X B
uh 2 .
— 10—6 ‘i¢& &
10'? : : . %*t-rj-—i—n_t_——li.-—d——t—zrl
1 20 40 60 80 100
Iteration k
Figure 1. IND: Train and test on synthetic data
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b\ == | 20-PA
— n L20-PA-GRU
* N —e- 20-PA-MR
5 10_2 E ‘%
w B
~ <a
—_ \“
o Sea
X 4] sy
= 10 e
e il W
-
I ‘a_Va
-— \_A

— A XS ~
X 6] b, WA
X 10 <SG A
g e N
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Figure 2. OOD: Train on synthetic data and test on real data (BSDS500)
2. pfoh: NETEREBIRE, MKAERSEIESE(BSDS500)

3.3. xfEbscig

Xf s S8 2 S AR AL T I SR BUBUAE 5 R . LASSO [al A 1) il (s R an el 3. K 4 Fow) 5
L1 IE W00 S48 [0 e (SR BR 45 R a1 5. 13 6+ 1317 By ANSEIG o RO Sih 248 15 78 AR Fn 20 47 Al
WL, ASSCHEH ) L20-PA-MR AL A AE 50 A Y (IND)SZ 5t R R IUL S HlBoREfE . iR e i 53T
LSTM (¥ HERERY L2O-PA IX B [F45/KHE, F84r50IE T Frhe GRU + 2 KiE R )il & G e I 7 ik AU AE
R E A R s R 20T R W R S A T AR ST TR as 5 bk T 22 51 (e f 4%
BB FEIEACE BN RGBS, BGA B RS RS AP HCE D, RILH SR 2 500
AT R e R A E

10
¢ Adam
= Seg==ps= —»= FISTA
x =~:E::;=¥ —< ISTA
g e ey o —¥ L20-DM
S~ Ry S |
= NN Sty — L20-RNNprop
Iy 2 L20-PA
< 10 <N \‘.~‘ N
X % no ~ O — am —u= 0 L 20-PA-MR— 4
w %“ X M
| ‘\, \'h \\
—~ 10 iy A <
X N A \
X » N \
reg » “
~ 107 N Y Y
»
\A ~
10—7 ; ; 2 s e e i
0 1 2
10 10 10 10
Iteration k

Figure 3. IND: Train and test on synthetic data
3. A IEFRRTE S R IR

765 HP I 120 A AN O0D) I 5, L20-PA-MR #F—25 ™ i Al s iz A v g olleios B 5
LG R E R T AR L, AMGEBR G 8% 588 5 ) A 8%, SEAERZ CdR b BT
MHTZAIET) SOTA J5ik L20-PA. BT &, 75 LASSO 5747 L1 IEN T Z 4 [A 9% 35 00D {45+,
L20-PA-MR HH# T L20-PA P34 $2 1 20~30 P IERIE BRI FAL, X — PRI T 2 SkiE = IpL
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e AL B SR A SR B T IR AL & R R ARG HES B2, A3 R 1 oA i 2 ot R K2 AR T o il AL,
WIE 1 P SRASE R AR AR S0 23 A B A A ) FR S 12 5 A

10
== Adam
= e : - FISTA
X ‘44"-"{'\——_-:—_;-—7-——vh—vh—qh—-l!——v-—-v——‘-— —< |STA v
l\’ -l‘:::::_—;:::.-’l-.gzo-—-o——.—_.___.__.___.__.- =¥ L20-DM
= S¥=s f:t-_‘:~~~‘. ~ =a=+ L20-RNNprop J
* 10_2- N S b —:-—"—-A——b—-‘ L20-PA
x RO S~el =e- L20-PA-MR
w .'\ »\ *\\
H <
- : ~
| 10 4 | : \\\ ™o \\
~ : LA e
; : u\‘ \> ~
~
& o s ", s
=10 ] ] \“ ~ N
"z"—-c-~ :-A\f’--’--bt-b—.’-‘l
10° 10" 10° 10
Iteration k
Figure 4. OOD: Train on synthetic data and test on real data (BSDS500)
4. S NETERBIES, MWAEEIEIEEBSDS500)
10
== Adam
- A - ISTA
* -m=2=EgT 7S S Y Y -
« = ks=kSh R CE S il bbb N
\u-: 10_2_ \&\ "4\\ "’s\h =¥=: L20-DM
E ‘g\ ‘\ =4 L20-RNNprop
* A - L.20-PA
Kad 3 | 7N A — ke e L 20:RA-MR -
w4 \ >
I 10 N ¥ g ¥
\ ‘V\ \K
>A<< \\ ‘V’\ \
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D S
7 O s e e e +1 - e
10 ™3 "1 2
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Figure 5. IND: Train and test on synthetic data
5. 9 NGFMIKE S R EIES
10 Ad
= Adam
— i--ﬁi‘.*‘ - - _ =p= |STA
*>< v -isaf 5!-‘;;&\7{”*!;1”% ToersEnee, n
=, AN T e i veg Il il
L 10721 - iR ~v. L20-DM
E \\ ~§"-:=~.¢._ =4 L20-RNNprop
M “ N L20-PA J
-~ —- -PA-|
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'S 1 v &\
5 | "
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Figure 6. OOD: Train on synthetic data and test on real data (Ionosphere)

E 6. 2Moh: AT ERBURSE, MXTEESTHIEE (lonosphere)
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2 pe 5 E S R S SR S e R R Y B = M AT AL /S e e e e f
R Lt s e e Coibind danta
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Figure 7. OOD: Train on synthetic data and test on real data (Spambase)
E 7. 2o ST AMEIES, MXEELHIEES (Spambase)

4. BE

BRI T2 SR SE AL TR AL RE I AN B I, A SC MR R T DN, 3R — MRk
27 S R &5 ZRA 12 20 LU AL it D i, Ke A% 48 L20-PA B LSTM 2% £ #cy GRU,
FEOREA IS P ERE T RIS, Sl 20 30% IS HeE SEOl M A el BEROURTEER, D 5IAZ
Sk AIHLE, SRS A FE b 4B R 5 P S5 B IS L ORIR, v i O Ak A DL A 7 i A
ERREER, eI R G P SE R SO . SRIRSERARW], PR B AE Al A 7 55 rh
F5 5 L20-PA I LM EVERE, AN b I B & %, iz RE Tl 24 T SOTA J5
% L20-PA, = 2 RUALAL AR AE SCBn R A AU A 1) (¥ 52 PRI 1 A7 g ok s 56

SE
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