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Abstract

Unmanned Aerial Vehicle (UAV) swarm technology is increasingly applied in modern military re-
connaissance, geological exploration, logistics transportation, and other fields. However, during the
development of large-scale swarm systems, reliance solely on Software-in-the-Loop (SITL) simula-
tion faces issues such as insufficient model accuracy and the inability to reproduce real physical
characteristics, while full Hardware-in-the-Loop (HIL) testing presents challenges including high
costs, limited space, and significant safety risks. To address these challenges, this research report
elaborates on a multi-UAV cooperative simulation system integrating virtual and real components
based on the Robot Operating System (ROS). The system innovatively incorporates digital twin tech-
nology to construct a hybrid formation architecture comprising multiple physical UAVs and multi-
ple virtual UAVs. This paper provides an in-depth analysis of the system’s layered architecture de-
sign and discusses in detail the key technologies for data interaction between virtual and real nodes
using ROS communication mechanisms, the PX4 autopilot system, and the Gazebo physics engine.
By establishing an efficient communication link based on the UDP protocol, the system successfully
achieves state synchronization and cooperative control among heterogeneous nodes. Experimental
data indicate that the platform reduces experimental costs by approximately 77% compared to tra-
ditional full physical testing while ensuring high consistency between simulation results and actual
flight conditions (real-time factor k = 1). This report aims to provide a comprehensive solution with
high fidelity, low cost, and scalability for validating UAV swarm cooperative control algorithms, of-
fering detailed explanations of the theoretical foundations, system implementation, and perfor-
mance evaluation.
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1. 5|8

BEE N TR B S HEHS I R AR, TEANLRGIE M AN 2 Ao R LA s . AL
LERE(UAV Swarm)ilid 2 280 ANLII YR IR &, R 20 A o SR ARE 71, BR85S0 USRG2I T
R RATSs, WORTE S R . PRI S W R RS . SR R RE 1A% O AE T AN [a) (1) JR3 052 ELTR IR
A RA AT, XSRS B s B a5 B I&E R 1]-[3]

SR, Jo AALEE TR AR (1 7% Hh S TG 56 P2 08 I 30 E Pk ik« 78 SV T R W, W90 N D4 32 ARt
MATLAB/Simulink 5% 3% 38 F #3151 # (40 Unity, Unreal Engine Z5) 4 - BV 6 . X 2B E BRIT
R, (B2 T AT AT e R R, WSS % T, BEsE. LS
W s DML T 5T & I SRR o BF R, RSB ST sh IR E @ [ R, TE B B B Sl
PER, AR R A AR (g 22 (Reality Gap)ifi] 5 2UAE 5% 26 W H 2= BAL[ 1]

HHT WA B E T B N =K (2]-(7):
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1. SRR B (SITL): 7ETHEAL g AT IR0 I gm e RS, i B A B A PR R . FLAR A TE
FTHRFEAEN, ATPEIEAR . (H GRS 7R -5 2 06 B AF  BpE RS . A IR K F SR I AR UL,
FECER S TS

2. MR E(HIL): ISR (IS Pixhawk FEANMGFCUHEANL, KIBIBITE LA XA
girb, s s EAVEL . X7 e R A AR AT R SR E v, (HR R
BIERE) HIL & R 2 REN W58 R0M, ¥ RERZE.

3. &Y ATIR: R IIE RV R RN TFB, HEANCE & AT ESH TSR FEET
ABLEERE, A0 NRECE . b g S e i LR (81542 SEA I CE B B S HE LS BT
o

AT PG B TS S SR AR, B SE4E & (Virtual-Real Integration) 8 iR & BLSL0f H B AR MNMIE M A .
ZEARM LB o ES, R, BERGH ISR IS ANSAE, 5 RS &
PTG AN LR E [F]— 1) B 23 [R] 08 48 25 18] 4 r TRk 2]

FET ROS IS4G RGEARARMMH . ROS ME ML NS “ 2ol dhia e, 248 74
HEAL ¥ JEL 38 {5 L] Publish/Subscribe, {75 3 SALAE A 4% K38 2088 5 RB U128 A 16077 S8 T LAZE [H]
—H I S BRI, A, S e BT AR AEEOR, AT LK E ST AR AS SR L B R A A R, s
TR S S AA (R AH BN 5 W0 [

ROS K HBHAL 50 M N etE, O Z 148 A R 45 (Multi-Robot Systems, MRS)JH & [ 55 S5 ifE
[8]-[10].

IR ERAIBCHS B T 2 e 55 ZEE R R 2 A SR BIBA TR T ROS-MAGNA HESE, ZAEZEEET ROS Al
Gazebo, LI THTZ UAV WMEESH & X 5EH ., @i IR &N (State Machines) & FAT AL, S
SITL. HIL KW WATHIR G EE, B FRK T 2 MRS I AT I 11].

[ A 9T 34 B HH ) XTDrone “F- &3+ ROS. PX4 Ffl Gazebo, XHFLJied. [EwREZ ML L
WA E . Z P EER T 3 )1 AR B R S 4 i 5k, IR T A% SLAM SgmBAFE I E:11,
& H TR A DX A R B () 2 LA B T 6 3] [4] [12]-[15].

AR RS VIMS SEIG AR H 32 B4R H ROS WM T oA i B &, @il ZHIFT I H AR
e 7 R 5 N R E ISR &, GERH 7 ROS fEAL P iy R s v 77 T Re 71 16] .

5 RIS, R S 25 AR IE T B R(E 5 9 HIL [7) 52 4% 1937 e J0R A I St 78 T L2 A S0,
IS ROS 2 FURE B AR 772 22 1) 5 G A I A8 H0As SNy LS 28 0 JORBE AR, T e i R U A5 Tt e 44, X
LR TR 51 AT AL R B B b 4] [5] [7] [14].

B 22 ML [E) A B0 AE R, SR AT AR K NS-3 S 41 H AR AR A E] ROS ZEMH, DI E 5L
WE R e IR S R AR, PR B E FLEE 2]

ASCHT IR 5, Wi IHSLIL T —EIEANET ROS MM FEESELE S E RS . AP E

ZEUTHRIN T -
L BRHANHT: R0 7 AR AR ] PUT . SRR 20 R, SRR R (AR
PORE LN .

2. fREATEREE: @5 NSRS ANUEN PR, R RS S S s M A IE
REMEREIIAT A, 6 KIRPRAREE A A O RN, S35 3R T T 07 B Semt vk S5 4 B T {5

3. BHPEESEI: ik T PX4 I T MAVLInk)5 ROS(E: T DDS/TCPROS)X ] i i B 5 A
PE L, SRBLT UDP BRI 2 WL TR IR S .
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2. ZRANG\SHTRIEXELHR

2 WL BN B O AE T OR 35 2 A BEAAE 22 8] L BROARR LA R 2, RN S PR R 20 3R . I 42 1) 22
W EE Sy =R s SR EN[1] [4].

2.1. E£4\iF#l(Centralized Control)

FEAR P AR, AR A b S SRR S T S B TEL) 5 SR T MHLEPIR S B EL p,
W Y,), HHERRIERELSIF T KA.

MR R RE L2 R iR LR AR R, AR5 o BCRCR s SRR TH BB Y AR 2RO,
XA R, HAFAE SR R o T8 TN A S A BSOS BA TR A FE SR AN ey AR KA T

2.2. 9% RiZH](Distributed Control)

AT AR T 0T R, AT AN S IEEVEE N AR RS EAER, BT R Se R ik
THIAT N R E AR — B0 5% (Consensus Algorithm)FIA T. 33775171,
BETES, AT BTN, HIEHN u, 185 &

U = Z%(Pj—l’f—%)”(w—vf) 0
JeN;

R N ABIEERS, a, AMITIERERE, 5 AWM R, y e R E.
oA AP RO m A G R A, BRI M A, Hag RAF R Fe it T ek 2 5 DLORAIE
SR, WCSICH R A2 T A5 S AN

2.3. i - ERMEE =AY (Leader-Follower)

ARSI S - BREEHE BEAAE D 07 SR U0 I SRS o A Ol L i 52— ZE AW (Leader),
HAR N EREEF (Follower). BRIEEH (X7 SRATAHIH PR RIAT4ERF BN, A B4 A QWi B AR 3 A2y
A1 2 5 LR B

WOWIELLEN p, » B MIRBEE RN EN p, = p, +Ap,» WELERE e = p, —p, o EHI Bz
1 lime, (1) =0 -

24. PHEREANHHF M

N T AE Gazebo H SIS LRV ER 0 0, o200 ST AR R B DU g 3 5y ) 2 A A o A A A N
B H NI, ETEh 5T 9].

2.4.1. BIRREN
HEERFE AL BR (O, —x,7,2,): NEDCLARHD AR R, T4k T AN
HUAMBER R (O, —x, 1,2, ) TS AL T IE AN O, il ) LB [EE
TR R, HEAHUA R BIHhER RIVE AW, KR AR ¢ 1O Wiy e

2.4.2. RIEEIHFHTE
FR A0 - Wik 52, DU (12 3l 7 F2 ] #ii8 h 6]

FE TR
mp =Ry - F,

hrust

Hobom AR, p AELBAR, F,. =[0,0.T] MRS, ¢ NEH. F, AR

thrust

G+F,, ()
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Fezh i
Jo=M,,, —ox(Jo) 3)
Horp J NS IR ERHIE, o NWVUEREEZ, M WHEE P ARSI (BARRE . M 5 R ) .
£ Gazebo i EH1, X o)1 Ja 11 38 5 47 H AR S (Simulation Description Format, SDF) S {147 i
&, PELSI%E40 ODE W 4 57 sk Bk oy TR, SEIN SR ALIRZS[9].

2.5. BEXHES

PX4 K% 5 ROS Kb 4 (QGroundControl, QGC) X [8] (¥1iE 15 = K #t MAVLink ¥ .

MAVLink £ —fh#2 8210 —3EH1H Bl il e KB B M E LN LA

1. STX: #24fHrE (V2 BUAE S N 0xFD).

2. LEN: R mKE.

3.SEQ: f¥5, H TRl EM.

4.SYSID/COMPID: %% ID 544F 1D, FHT X7 M2 F AR TE AN AR« dz . AHBL. FEAL
HL o

5. PAYLOAD: S:fr##sun4 746 ATTITUDE 4 & 1D #30.

MRS, BARR -

1. Gazebo -> PX4: Gazebo il TCP 4560 i FURHTHAL A8 204 IMU L GPS 25 K% 45 PX4 SITL
.

2. PX4 -> AEB: PX4 ff5H 5 PR (S B UDP i ) H#%.

3. UDP 14550: Xi%% QGroundControl H T s

4. UDP 14540: K i%% MAVROS i &, ## N ROS Topic.

5.ROS -> PX4: #1544 MAVROS #3425 MAVLink £, @il UDP &[5 PX4,

3. SENUESEARAHET L

AREVEMN AT G RGN BRI 0 KB BRI SEILARYT . 1 & B R MR R0 RE LT R
SEAEA R I, 8L SN SEARTE AR “N - HL - A58 IR R & BT

31 EEARGEN ST

FERMABEIA S 2, BB R AREZE . B2 PUTEMERE, &2 ROS #EEHL
] A o

3.1.1. R E (Decision Layer)

ZJ2E P F RS 555 0 BOBEI A B, A2 2mBAIR) “ KI 7, A TS K

Horr P[RR HGE 47 75 ROS Master 719 s (B A PERE PC)o B4R ICK H s 1) = =48 2, FIAH
2R IR A% RRT 5542 i BN B AR (1 S B Bk s AT55 40 Bl e R s BE s A R, KA
B RBNAS 73 Be 45 9 A 1R B A Te AHL(E SR 5 UL ) o

3.1.2. ¥F#IE (Control Layer)
B TR R Z AR 2 H AN AR AT AT B ETE 2« g A5 388 5 MAVROS M 2H ik
L g B\ A28 1] 2% 2 At 0T ST - PREBEREAY, TSR BE AR T AL, IR PID Bl
2 o) B0k AR A I B EOR AS FE S MAVROS Mi#{E N ROS 5 PX4 WIRiixE, Fi=fhlfa 4w
/mavros/setpoint_position/local 4545 MAVLink i .
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3.1.3. $11TB (Execution Layer)

%R S A I, BTN AT AT LAk

Horb BT 142 B Gazebo #7351 % H1 PX4 SITL [E£F4H M. Gazebo BLAFLHE F ¥ E Ty, KIH Y
fif4i, PX4 SITL izfT5 5 W858 4 — SRS, Bl ST PAT M4/ B BCSE i e AN LR A0
&3 PX4 BRI IR S SEAARTE ANLIE AL 2 A5 Bl 40 Raspberry Pi/Jetson Nano 422 A\ {Jj 5L/ 2

3.1.4. ®/~E(Display Layer)

7R 2 H Gazebo GUI 5 QGroundControl X /™2 A4 #4) i o

Gazebo GUI SEWFVEGL =2t 5t, /R FTA Jo AMLCELHE 2448 T8 AN 207 28 A2 B 132 RS
QGroundControl F Ayid b [Tk, 28 B A =15 st (1) FEIth FE - GPS B B0 J RAT AR, Skt —Bat i A
B IEN TN,

3.2. Gazeboy ROS 5 PX4 BI¥E3Z E5cI

N T SEBURESETT s A, L AUTE R R BRI R R L2 . VTR R G (0] R BE &2, R
NS R P00 B PR PA S U i K A O D 2 LB A REAT o R

3.2.1. ERlRBEAER

7E B, Gazebo 55 PX4 SITL J#id gazebo mavlink interface ffifFi3E {758 H. .

ATHERK 1 Gazebo LA IMU A04E I T | FEAR A AEH0HE L 400 Hz SAE T TCP Kik4: PX4;
FATEER T PX4 TFELH A HHL PWM {8 [A4%45 Gazebo, Gazebo & Nl ik, it /1M
I, W) .

3.2.2. SE{Fim¥iERRe

SEARTE AN BB AR B AE A (HIL ) BV & 2H AR

SEARTE AMLHINLER B IZ1T mavros_node, i#id & 1 UART/USB B0 /) MAVLink ##8, 0%
H KA N ROS Topic % /uav_real/mavros/local_position/pose K58 R4 [F] 25 o

1t Gazebo HHAIEE—A“ 577 MR, ZAE AU T AL, T2 EEET R SR TE AN ROS Topic
R FHALE P AR WA E . X AR R ANLEES “F2” SERTEANL, FREHRBAIE S A

3.2.3. ZHLBEEROMR
N T RIS, RYONEZET AN BT B B I ROS 4 25 I0], #E & 1 a4
[15]:

Table 1. UAV communication ports and ROS namespace assignment table

= 1. T AR O ROS AT ENER

FTAMLID H MAVLink sys id A3 UDP i FI(SITL/HIL)  ROS #r#4 258 HuTh b 1
UAV 0 Ak 1 14540 /uav0 14550
UAV 1 JsEis 2 14541 /uavl 14550
UAV 2 JEis 3 14542 fuav2 14550

Jiif5 MAVROS 2451 i 3% 4% 5[] — 4> ROS Master(iz 1T EHb i #4134 PC ), 83t UDP Pril sl
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JR A P e e 22 3
3.3. &F ROS BENFIHSHERRZE

ARG 740 I ROS B =i (5 ML R 12 A 7] J= 2% 1R A8 L7 K

1. Topic(T&E/E): F T =i iy #dis -

B i uav¥/mavros/state | & A ML E R &S . 8 3 (Offboard/Hold) « iR Bk &, B T
/uav*/mavros/local_position/pose DA 30 Hz~50 Hz #0347 B AL MV eEE B, X8 g B i 592
MIRZOHIN -

2. Service(R%): H T HI S48 1L

/uav*/mavros/cmd/arming 1% | FRALARSY L 81; 81T /uav*/mavros/set_ mode V)4t RATHEA . ARZSALHI]
(P ZERFVERA DR 1 48 2 PAT IS YR AT SE

3. Action(F1E): H T K HIT% .

FEPAT I AT SSIS, ML 58T Action Server K& HbR U751, B AHLE AT AR Hidid Feedback
SIS, FUVFHB TR B @IS Preempt SKAE  BUEE AT S o

3.4. MEHWEESLERASTANSHEFAHER)

H A QGC fEZ M, B8 A 3R AIAA sys_id () MAVLink i, FF7E#IE FFEERZ
AIEHF -

W SN ) B AR LR :

1. WG J53 3 ROS Master, JI#EK Gazebo P55 . 3 2 Sk Jo AML, FALE N F 3% #: ROS Master

2. BWAERL: @I IA multi uav_mavros_sitl.launch 7E Gazebo A 2E BRSNS ZE FEHITE AHL .

3. RBNEEL: HuliiuiRik “Takeoff” $84 . SLARTE ANUFIREAUTC AN N AR Bie &, -2 T0E &
i3

4. BRI KAT : 384T AE PC 3 2 BA SR T S0 0T Bl AT T AHLAL B AR ¥ S 44 T8 AHL UAVO 8T
B UAVL. UAV2 ISR E, IR RAiEHI4E 4

5. FIAE: UL ANZ BT IR A MR, HALE BT ROS Topic SER R4 H
v, SR B A R R DL B 1 AR R SRR AU TS AHLAE Gazebo A AR FIBLED , LREFATEAHL.

4. BEXGEHRAFaSHREHTRFaxtt

N T RUEASE G AR, FATRAT 73 SR, H 3 SHEGEH S L0 2P & (OMavSim/44 SITL)
HEATPEREVEA o VPASHE R B AR SE | RasE PR e
4.1. TEAEREERSITHET A

4.1.1. SEFFEF (Real-Time Factor, k)
SRR A E I B AR A o 8 SCSEIN DR & Dy B IS B 5 0 S TR 52 ) B A =

T,
k — sim 4
T 4)

real

EHERE T k=1,
k<1 T B E BT E, RG0S T H L A (Laggy)
k> 1327~/ Bl % (Overclocked)
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FERESESS G ARG, BT SR ANBITAED BN Fh (k=1), TEAELATAEREF k=1 LL4ERF
2L, 02 FEARHIR 2 AN RS AL,  5IR RGAH

4.1.2. (LEIREHFHR(RMSE)
B MBI 4\ AT o 0 R BB O T . A T BRI 1, FIRERRE ¢, (1) = p, (1)~ pu (1)] -
RMSE $& 45 & SN
N

RMSE = %Ze,. () (5)

ZARARIRE 77 G AR I R IE AT R RS BEA TP fE
4.2. SKEHRBE

SR N Z2 di ) SOLO P Jig 3 T8 A MUY

SRAEER): 4H IMavSim “F §I21T 3 JLEHL SOLO Jo AWLIEAT Sifi - FREE LB -

SEWHBELES): FHACRITRTE, B 1 2EHE% SOLO TANUEAMMIE, 2 4 Gazebo
TNNUAE S ERBEE -

55T -

1.0s~60s: g KIEfE.

2.605~300s: % “8” FIHAIEH.

3.300-600s: BATEAZ (= ff1 BATE B 4 —F A TE) o

43. KWERSHH

4.3.1. SERMEXEE AR
KIS T 10 i H I RE R I S R kAR AR, IR AL 1R

IR PRI
JMavSim{E HES
&hHFE
2.0
1.5
lin)
X
1.0 MV DL ! | d Y R Al + &
0.5
0 2 4 6 8 10
Bf1e] (73:5H)

Figure 1. Real-time factor comparison chart of platform simulation

B 1. PSR E T

ZEHEE IMavSim: £ EIEEEIZY, JEETE 0.5~2.0 217, BT 40547 B s L CPU
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FE, MEEEREG G FEFE G H SRR, 7 SR RS BRI S R B DI . X v T AR
PR BT FH T8 B () BBURK PR 8RS BRI

BELEETFE:
YENFIE, H Gazebo fit & 1 lockstep X5 ROS W8k [ . EIELERIEIE e i #3mes, ROS K
FENLHIAE S OB T P S 2R I Sy 1 . BUHR R, B SE 4 &1 & IS KA IR B U B - =40,
T SRR B ] 14 77T K
43.2. REMSHERESHT

V5 S0 A SR BRI ) B 22 1 AR 1] 2

SEIN R kIR ASEAE 1.020.05 I N XA R GG 1 B S SR A RE AR

fIEIRENIE

0.5

0.4
¥ 03
E 0.2

0.1

LS
0.0 4 JMavSim
2 4 IE 8 10
R (52)

Figure 2. Simulation platform error comparison chart

2. FEMARENLE

ARG SLIG Kt , A0 65 P ERBE R AL B R ZE AR, SFEIRZELIN 025 m, FRAERE 0.3 m, W

T 2:

Table 2. Simulation data comparison table for two platforms

= 2. WEahEHEtE

PR SEI A7 B A% 2 (m) PR ZENRAEZE (m) W2 AR
4l fz 4l IMavSim 0.25 0.30 AL BRSO 12
e 0.20 0.12 HAPE, WEURE B

FEJA & IMavSim (IR T EAEAE, HokZ BRI, 380 AU RGE i 25 5y = AL i
ORIE G TR SESE A 07 5P & P PR ZE R 0.2 m, HRZE M2 5 il . H o AHIFE KAT
RSP EAE ], T RS RE “ARiE 7 45 7 g AR o R SR AR S B S BT
PR PR (AR, A R AR P R S . XS RAESE,  SIAIBESEARRENS B35
T B FLSC AN R G Aa e
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4.3.3. ATFREMSHERNEED

FERTEEME A p, FRATAESEE T A EEN T 88 AL R 454 .

AP & S BT T %984, SRR AN TS BRI KBS E, RAER
BEEILEE .

FERESELE G G, B KR B 15 0t 45 BERIME, STEMR T “RZSIRE] fRaE #T
AT, FIRHE R TS E R X —MR R U, BSREE T G R 20 SR B SLhd
PRARR e A, B T “fRRD7E AR &, ML CHE” MBS .

4.4. BRI ST
B 7 EORPERE, QU TG 0T EOT G I E SRR . DURAIE 9 Z870 AHLE A9 1247 A T 5
HRR 3:

Table 3. UAV formation cost estimation table

= 3. RARBA AR AN E =

. T . . F
AT G4 A T, ﬁ%
T AN 9 & %7200 JG = 64,800 JG 1 & x7200 7 =7,200 7G SOLO #ir &%
1 B T AEnk 14 x10,000 7G = 10,000 7T 14 x10,000 7 = 10,000 7 4 RTX 4060 Ti &
Yy 5 Y 215,000 TC/VK 07t S 58 RIA] 58 B
A ~79,800 7T ~17,200 JG TEYL) 78%

BT IR, AT RAETE BB K SRR, S RA A SER ) 23% /8 Ao KPR BOACRY
PEAEASARHIE A AT DAAEAT BRI T T KA SR R M S0, BRI 1 e TIRE

5. REERE
5.1. 22X 24

AT TE NAIEREDE 70 07 50T {5 B 5 S B0 AR 2 [ (8 &, BT RSl T — 85T ROS M2 L
R SREE B 1 KR S

RALI: WIhEE T4 Gazebo WIHL 5| %, PX4 IS SRR A B SE T AN T — R IR & 15 57
. FA UDP i@{5 1 MAVLink ¥, 73 7 RESEA AL, S 1 Hfs i SE XUe i 3h .

PEERRAR: ST ELSEIGIERE, %7 G SR Tk~ 1) FIRRSE M5 TH S B TR B8 1) IMavSim 40 & fU4/5
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