Computer Science and Application &R 5N, 2026, 16(1), 230-241 Hans X
Published Online January 2026 in Hans. https://www.hanspub.org/journal/csa
https://doi.org/10.12677/csa.2026.161019

@

HRER AR A

T ¥t Y OLO VS Y Rg AR FdiT;
s

HERY, FRXF, R R, FIXF, ALK, K MY

tep E K REART S B AR HE A B TR, RO AR AR R I R, B
RSN B A IR A E], B

Wk H . 20254F12 16 H; FHHEM: 20264F1H15H; KA Hi: 20264F1H21H

R

FEARBRUF /N 2R P BRI E BRI AN, RRERIBEO BB RS T . BB
EZ 5 BN R RS H . BEEKT AR AR GHBMENRERE, BHEAEEERER
FR 75 A I 4R B RO R AR BRI BB AL B I BTVE R . X T H it AL EMEBERS TERKHK. HH
FHE ML R R IRALR B R R R BRI S, 2 CIRHYOLOVSs-CBAMBE I 224, iHid #EYOLOVSs
B ETF MR HRA CBAM (BFIRER HHRER), S T ERFEWE R OERtRAt. FHEFS /R
KL AEE - 2 XSS I, H A C2EE MR BHME R A 2R . AL T RS s AR BT A
WN.RE ). SEI4E R EK I, YOLOVSs-CBAMIE{RIFZEFREMMFER, SZHL T mAP50iX%]0.92, HAIE
B30 FPSHIMERE P4, ZEEEMTES S HETYOLOVS X YOLOVS-BiFPN& ¥ FAREL,

X 5in
FTRBEIT, EReHEE, FRERNBOR, YOLOvS, BHREE, R

Research on Intelligent Identification
Technology of Antarctic Krill Swarms
Based on Improved YOLOv88

Haodong Yang!*, Hanfeng Zheng?, Ai Guo!, Lingzhi Li}, Jidong Zhou?, Yang Dail#

IEast China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fisheries
Remote Sensing, Ministry of Agriculture and Rural Affairs, Shanghai
2China National Armament Beidou Application Research Institute Co., Ltd., Shanghai

Received: December 16, 2025; accepted: January 15, 2026; published: January 21, 2026

T
FHERERE

YEGH: ISR, BN, %, ZERE, ALK, WM. T yoLovs MBI BRIRHEE AL R A BRI FT]. it
BRI 5, 2026, 16(1): 230-241. DOI: 10.12677/csa.2026.161019


https://www.hanspub.org/journal/csa
https://doi.org/10.12677/csa.2026.161019
https://doi.org/10.12677/csa.2026.161019
https://www.hanspub.org/

(N N

Abstract

Antarctic Kkrill, as the organism with the largest biomass in global fisheries, is intrinsically linked
to the fishing efficiency and economic viability of polar fisheries. The harvesting of Antarctic Kkrill
is increasingly emerging as a focal issue in the development of polar fisheries. With the rapid ad-
vancements in underwater acoustic detection technology and machine vision, precise and efficient
sonar image recognition has become a cutting-edge technology for intelligent krill harvesting. In
light of the limitations of current manual sonar image recognition—such as prolonged processing
times, substantial consumption of fishing vessel crew resources, and sub optimal accuracy and effi-
ciency—this paper proposes the YOLOv8-CBAM model architecture. By integrating the CBAM into
the backbone and neck of the YOLOv8s architecture, achieve enhanced robustness against complex
sonar backgrounds. This integration utilizes average/max pooling along with channel-spatial dy-
namic weighting to reinforce the model’s feature response capabilities, specifically for Antarctic
krill. The architecture maintains optimized feature aggregation efficiency by incorporating the C2f
structure. Experimental results demonstrate that YOLOv8s-CBAM strikes an excellent balance be-
tween performance and lightweight architecture, achieving an mAP50 of 0.92 and a detection speed
exceeding 30 FPS. Furthermore, both quantitative and qualitative analyses confirm its superior per-
formance compared to popular baseline models such as standard YOLOv8 and YOLOv8-BiFPN.
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Figure 1. Framework diagram of the YOLOv8s-CBAM network model
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Figure 2. Main network diagram of the YOLOv8s-CBAM model
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Figure 3. Schematic diagram of the CBAM module structure
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Figure 4. Sonar image of Antarctic krill after preprocessing
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Table 1. Model training environment parameters
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Table 2. Comparison of experimental results of different network models
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Figure 5. P-R curve of the YOLOv8s-CBAM model
5. YOLOv8s-CBAM #%2! P-R fhiZk[E]

SHHEREG L YOLOVSs A AU FEHE, SEH T YOLOVSn. YOLOVS-BIiFPN 259 I kAT HEE M) e &
53 HT. YOLOVSn i /N RL R ), Bk T — @ e MR FE AR DT B s YOLOVS-BiFPN 1 95]
N BiFPN E 2 5 (RS AR AL, ) FH SO ) 4Rk 5 R0 AL i B LA, B0 R &5 5 AN TR R RE IR AE A 2
T YOLOVSs HIHERATE R FT i i;  YOLOVS-BiFPN-ghostv2 Ayt — 4L BiFPN #&Etf{] YOLOVS-
BiFPN fill#54!, it Ghost BT N EMN B, WD EIFRTHRHMER AR, & OUE &Pl
FRAHELT YOLOVS-BIiFPN 344 Fi#é Ft; YOLOv8m ¥ H YOLOVS HIi%.Co4EH, fdh C2f ik, PANet I

DOI: 10.12677/csa.2026.161019 236 HEHUR 5 R


https://doi.org/10.12677/csa.2026.161019

(N N

PRSI Sk, AR T S HE R RORE MO SRS s AU Y YOLOvV8s-CBAM 4 2Yid i 72
TTE AN (A AEFE LN B & R, 398 ARG SRR (S B R AERE T, 1R T A IR RRIE R R
&, Itk 7 BAskilltERe . AHECT YOLOvSs LA R HAME AL, & IUpPl F b R U T B R4 7. DL
YOLOvVS8s AL HE, Precision $#2F+ 9.7%, Recall #£F 1.6%, mAP &5+ 3.7%, fps #&F+ 5.7%, iE [
AT TV BT AT AN R

s - T T T Lauamn ad i)
4 { {
| | il T
= LI o ey ——— 75 18
e - ]
= ]
| [
i 80 | | &0 j a0 80
) ¥l | Jik
i -85 ) | &5 ; Y | as 85
S5 Al
! P i
—90 e 50 W ~80 90
| "
[-%l™ !
95 |-k ; a5 { a5 95
| )
a0 | i 100 Lol 100 ‘ 100
| | i i | ]
b= |
3 : -105 ¢ ! -5 il = -105 105
i) I | | |
| | | Ve i e ! | Gy |
= e I (S W, S R S J—
WBT 738177-15 ES38-7_ES p 110 WBT 738177-15 ES38-7_ES | -110 WBT 738177-15 ES38-7_ES i 110 WBT 738177-15 ES38-7_ES 110
T ; i i

(a) (0.88) (b) (0.88) (c) (0.90)
T1 (YOLOVSs)

=0
.
4

(b) (0.88) (c) (0.88)
T2 (YOLOv8n)

:
(a) (0.86) (b) (0.88) (¢) (0.88) (d) (0.92)
T3 (YOLOVE-BIFPN)

-110 WBT 738177-15 ES38-7_ES|" —~110 WBT 738177-15 ES38-7_ES

1 . 5
e i ‘
I3, | I}
i | : - =
] 1T 5 I~ Vo A [
! ' i | ‘ T i ]
1 ! | O
=1 00 || i ~100 ' i : 100 ' —100
X { | It} i i A IR :
i ; e | e
; : : -105 ! ! -105 . el -105 -105
S i | | | i:il
| ‘ : R, Bl P
WBT 738177-15 ES38-7_ES b _i0 | WBT 73817715 ES387 ES| | _110  |WBT 738177-15 ES38-7_ES|- _150 |WBT 73817715 ES38-7_ES. ]
T ; i YENED)
. Lol ky P
T R E
, ™
. ; u : . -10
S, | : ]
. o ok 1
Uy i L Y
z -7 . e

DOI: 10.12677/csa.2026.161019 237 THENUER 5 N H


https://doi.org/10.12677/csa.2026.161019

(A N

T Y " T T LA i
A i i
| ! ! i A |
” T ——— | E
0 [ B a0 L o b e w0
Vit | { ; | |
j -85 ] VL% 15 1 PN -85 -85
2 i
1 i i R
o0 | A | —s0 """'W -90 ~9g
‘ ! i ]
! | o TRy
| -95 |- i ! -o5 I -95 -o5
|
‘ f ,
100 | il 100 I i ‘ 100 ‘ 100
! | 3 i o Ty ! :
i [ I
05 | ‘ s | 31 105 -0
1 | | 1
[ % | i ol > o ey
WBT 738177-15 ES38-7_ES| - k Lo |WBT738177-15 E538-7 €| | Lo |WBT738177-15ES38-7 €S| | 1o |WBT738177-15 ES38-7_ES ]
N : I - =5 —
(a) (0.86) (b) (0.87) (c) (0.88)
T4 (YOLOVS-BiFPN-ghostv2)
" y Y "y T T L b
4 | {
o il [ g
| i R Wy I
i 80 | I I ' ~80 ¥ ~80 -80
| fad | ! I
ki ; g 74 oyl 3y a5 : ! & -85
I : i 1 ¥ i
TP ————— |
| 1 f _ T
-9 ket s a0 W Bl =
j '
| e |
95 |t i I a5 R a5 95
| ! B
-100 | | | i\ i -100 Jodh i -100 g i -100
y i ;
i\ !
-105 ¥ | -105 % i -105 ~-105
5 ' ' | | | !
/ ) | (R 1 ] ! } vy
x g 3 3 DN S P s L. o] S s
WBT 738177-15 ES38-7_ES : Lo |WBT 738177-15 £S38-7 €| | L0 |WBT 738177-15 ES38-7 ES 1 _110 |WBT 738177-15 ES38-7_ES 215,
& 3 ] - A |
(a) (0.91) (b) (0.90) (©) (0.91)
T5 (YOLOv8m)
g iy \ ma T T s TN
1 ]
| ! | I |
=15 -73 e 4 =13 |
i I VIR
| | ok it g
i 80 ‘ i 80 “ 80 80
\ Jol | f fra
L ; ! -85 y: 4 A a5 ! gl -as a5
I ! + ' i
| e | 1l |
50 L b o """w %0 -9
3 i ' "
|
i |
-85 |-"E Jioz. sl 95 (! a5 -95
| I
—100 | i X 100 \ I i 100 ' & -100
] J ! o
1] o I i
9 ¢ -103 ¥ ! -103 i | -103 -105
i | |
i b T e Sl ! s ) .
WET 738177-15 ES38-7_ES " _y0  |WBT 738177-15 E538-7_ES| | _110  |WBT 738177-15 ES38-7_ES| _110  |WBT 738177-15 ES38-7_ES =715,
[WET 73817315 ESpREa |
T i .

(a) (0.90) (b) (0.92) (c) (0.89) (d) (0.92)
T6 (YOLOv8s-CBAM)

Figure 6. Comparison of detection results of different models
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