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Abstract

The traditional Tolles-Lawson (T-L) model faces limitations in effectively compensating for nonlin-
ear magnetic interference in aeromagnetic surveys. To address this challenge, this paper proposes
a novel magnetic compensation method based on a combined LSTM-BP neural network. This ap-
proach deeply integrates the capability of the Long Short-Term Memory (LSTM) network to process
temporal dynamic features with the strong nonlinear fitting ability of the Back Propagation (BP)
neural network, constructing a hybrid model capable of both temporal modeling and nonlinear
compensation. The LSTM network is utilized to extract dynamic interference features caused by di-
urnal variations in the magnetic field and changes in flight attitude, while the BP network is intro-
duced to compensate for and optimize the residual nonlinear interference components that are dif-
ficult for the LSTM network to fully characterize, thereby achieving accurate modeling and suppres-
sion of complex magnetic disturbances. Simulation data were generated based on the T-L model,
and compensation performance was compared using the LSTM-BP, GRU-BP, LSTM, and BP neural
networks, respectively. Experimental results show that the proposed LSTM-BP model reduces the
peak-to-peak value of the interference magnetic field to 478.44 nT, and the improvement ratio is
nearly 3 to 7 times higher than that of a single neural network model, reaching 25.2. The study ver-
ifies the effective complementarity of the LSTM-BP combined structure in modeling both dynamic
and static nonlinear features, providing a new technical approach for high-precision aerial mag-
netic survey data compensation.
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Figure 1. LSTM neural network architecture diagram
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Figure 2. BP neural network architecture diagram
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Figure 3. LSTM-BP neural network workflow diagram
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Table 1. Comparison table of compensation effects under static and dynamic characteristics
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Table 2. LSTM and BP layers, cross comparison of activation functions
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1 tanh 1 tanh 14.116
1 tanh 1 relu 12.200
1 sigmoid 1 tanh 5.496
1 sigmoid 1 relu 3.943
1 tanh 2 tanh 24.868
1 tanh 2 relu 5.226
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1 sigmoid 2 relu 4.310
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2 sigmoid 1 relu 9.665
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2 tanh 2 tanh 25.879
2 sigmoid 2 relu 5.549
2 sigmoid 2 tanh 6.166
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Figure 5. Schematic diagram of LSTM-BP neural network compensation
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