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摘  要 

针对传统Tolles-Lawson(T-L)模型在航空磁法勘探中难以有效补偿非线性磁干扰的局限性，本文提出一

种基于LSTM-BP组合神经网络的航空磁干扰补偿方法。该方法深度融合长短期记忆网络(LSTM)对时序

动态特征的处理能力与误差反向传播网络(BP)对静态非线性关系的强拟合优势，构建了一种兼具时序建

模与非线性补偿能力的混合模型。利用LSTM网络提取由日变磁场及飞行姿态变化引起的动态干扰特征，

同时引入BP网络对LSTM难以充分表征的残余非线性干扰成分进行补偿优化，从而实现对复杂磁扰动的

精准建模与抑制。基于T-L模型生成仿真数据，并分别采用LSTM-BP、GRU-BP、LSTM及BP神经网络进

行补偿性能对比。实验结果表明，本文所提LSTM-BP模型使干扰磁场峰峰值降至478.44 nT，改善比单

一神经网络模型提升近3~7倍，达到了25.2。研究验证了LSTM-BP组合结构在动态与静态非线性特征建

模上的有效互补性，为高精度航空磁测数据补偿提供了新的技术途径。 
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Abstract 
The traditional Tolles-Lawson (T-L) model faces limitations in effectively compensating for nonlin-
ear magnetic interference in aeromagnetic surveys. To address this challenge, this paper proposes 
a novel magnetic compensation method based on a combined LSTM-BP neural network. This ap-
proach deeply integrates the capability of the Long Short-Term Memory (LSTM) network to process 
temporal dynamic features with the strong nonlinear fitting ability of the Back Propagation (BP) 
neural network, constructing a hybrid model capable of both temporal modeling and nonlinear 
compensation. The LSTM network is utilized to extract dynamic interference features caused by di-
urnal variations in the magnetic field and changes in flight attitude, while the BP network is intro-
duced to compensate for and optimize the residual nonlinear interference components that are dif-
ficult for the LSTM network to fully characterize, thereby achieving accurate modeling and suppres-
sion of complex magnetic disturbances. Simulation data were generated based on the T-L model, 
and compensation performance was compared using the LSTM-BP, GRU-BP, LSTM, and BP neural 
networks, respectively. Experimental results show that the proposed LSTM-BP model reduces the 
peak-to-peak value of the interference magnetic field to 478.44 nT, and the improvement ratio is 
nearly 3 to 7 times higher than that of a single neural network model, reaching 25.2. The study ver-
ifies the effective complementarity of the LSTM-BP combined structure in modeling both dynamic 
and static nonlinear features, providing a new technical approach for high-precision aerial mag-
netic survey data compensation. 
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1. 引言 

航空磁法勘探作为一种重要的地球物理勘探方法，在地质构造和矿产资源勘探方面有着重要的应用。

通过装有磁通门磁力仪和光泵磁力仪的无人机在飞行过程中测定地磁场强度，来进行快速、高精度、不

受地形干扰的地质构造调查与研究[1]。然而在数据的收集过程中，磁力仪检测到的是多种信号的叠加之

和，除要探测的目标信号之外，还有许多干扰磁场的信号。包括地磁场、飞机平台的磁干扰等。所以为

了更好地进行探测，就需要将这些干扰项进行补偿。而航磁补偿的目的在于将磁力仪探测到的信号中，

将干扰信号带来的影响减小到最小[2]。 
现有的关于补偿由于飞机机动动作产生的航空平台磁干扰中，最常利用的就是通过传统 T-L 模型进

行补偿的方法。但是经典的 T-L 模型进行补偿时，仅将由飞机机动产生的干扰做了补偿，而对于其他干

扰项例如地磁梯度、低频干扰项等没有进行建模表示，且随着要求磁补偿后经过的精度的不断提高，通

过 T-L 模型进行补偿存在一定的局限性。后续的磁补偿研究多围绕对传统 T-L 模型的改进展开。Yuan 等

人通过引入地磁场矢量模型对该经典框架进行了重要扩展。该改进有效克服了原模型未纳入背景磁场空

间结构与时间变化性的局限，显著提升了航空磁测中磁干扰补偿的精度与稳健性[3]。Wang 等人构建了

基于 GAN-LSTM 的二次补偿模型，有效增强了对航磁数据噪声的识别与抑制能力，从而显著提高了整体
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补偿精度[4]。Liu 等人通过构建地磁场模型对传统 T-L 模型进行了扩展，弥补了其将地磁场视为恒定量

的不足，使得补偿结果能够更加准确地反映真实地磁场的时空变化特性[5]。Sun 等人将误差反向传播神

经网络引入磁测数据处理流程，有效弥补了传统模型在处理非线性磁干扰方面考虑不足的缺陷[6]。 
受上述研究成果启发，本研究提出一种基于 LSTM-BP 神经网络的航空磁干扰补偿方法。该方法通过

融合长短期记忆网络(Long Short-Term Memory, LSTM)对时序动态特征的记忆能力，以及误差反向传播神

经网络(Back Propagation Neural Network, BP)在非线性拟合方面的优势，构建了一种兼具时序建模与静态

补偿能力的混合模型[7]。首先，利用 LSTM 网络从磁测时序数据中提取与时间相关的动态干扰特征，以

捕捉磁干扰随时间演化的内在关联性，弥补了传统 T-L 模型没有考虑地磁场变化的缺陷，并且比单纯引

入地磁场模型改进的 T-L 模型更加高效；继而，引入 BP 神经网络对 LSTM 难以充分表征的静态非线性

干扰成分进行建模补偿，从而增强模型对复杂磁扰动的适应性与泛化能力。LSTM 与 BP 网络的协同建模

机制，不仅强化了对历史相关干扰特征的刻画能力，也有效弥补了单一模型在时序动态建模或非线性静

态补偿方面的局限性，显著提升了磁补偿模型的精度与稳健性，为航空磁测干扰补偿技术的研究提供了

新的思路与可行路径[8]。 

2. 算法原理 

2.1. 干扰磁场模型建立 

由于地磁场的强度远远大于飞机产生磁干扰的强度，所以在工程实践中通常假设总场方向与地磁场

方向是相同的，所以将总场信号表示为： 

t E IH H H= +                                         (1) 

式中 tH 为总磁场， EH 为地磁场， IH 为干扰磁场。 
在航磁补偿 T-L 模型中，平台产生的干扰磁场可分为三种类型：永久磁场 pdH 、感应磁场 idH 与涡流

磁场 edH  [9]。永久磁场是由飞机上各种铁磁结构部件上的永磁体受到磁场连续影响产生的，它的数学表

达式可以表示为： 

( )
1 3

1 2 3 2
1

3

pd i i
i

u
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u =

 
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式中 ip 为永久磁场系数， iu 为地磁场与参考坐标系的夹角方向余弦。感应磁场是由飞机上的一些软磁性

材料，受到地磁场的磁化产生的感应场。它的数学表达式为： 

( )
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式中 ija 为感应磁场系数， iu 为地磁场与参考坐标系的夹角方向余弦。涡流磁场是由飞机机动过程中切割

地磁场产生涡流形成，它的数学表达式为： 

( )
11 22 13 1 3 3

1 2 3 21 22 23 2
1 1

31 32 33 3
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i j
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式中 i jc 为涡流磁场系数， iu 为地磁场与参考坐标系的夹角方向余弦， iu′为方向余弦导数。将上述公式行

整合可得总干扰磁场为： 
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由上述数学表达式可以看出，经典 T-L 磁补偿是线性求解模型，难以有效处理非线性磁干扰[10] [11]。 

2.2. 神经网络结构 

2.2.1. 长短时记忆神经网络(LSTM) 
LSTM 神经网络可以通过遗忘门(f)、输入门(i)和输出门(o)三种门控使信息有选择地添加或减少，

LSTM 单元每个时刻的输入包含前一时刻的记忆单元(C)状态、隐状态和当前时刻输入。首先是当前时刻

输入和前一时刻隐状态，依次通过遗忘门和输入门，完成记忆单元状态的更新，然后根据更新后的记忆

单元状态和输出门，完成隐状态的更新，这使其拥有较长的短期记忆能力，并避免了梯度消失和爆炸的

问题，更易处理时间序列预测问题[12]。其结构图如图 1 所示。 
 

 
Figure 1. LSTM neural network architecture diagram 
图 1. LSTM 神经网络结构图 

 
LSTM 单元在 t 时刻通过(式 6~11)完成“遗忘–输入–更新–输出”的协同运算：遗忘门与输入门

分别根据(式 6)与(式 7)以当前时刻输入和上一时刻隐状态决定要忘记的信息和要添加的新信息(式 8)，记

忆单元通过(式 9)根据上一时刻状态和产生的新信息对状态进行更新，输出门通过(式 10)根据当前时刻输

入上一时刻隐状态进行合并计算，并通过(式 11)利用当前时刻的记忆单元状态对隐状态进行更新。 

( )( )1,t f t t ff W h x bσ −= +                                     (6) 

( )( )1,t i t t ii W h x bσ −= +                                      (7) 

( )( )1tanh ,t C t t CC W h x b−= +                                    (8) 

1t t t t tC f C i C−= +                                         (9) 

( )( )1,t o t t oO W h x bσ −= +                                    (10) 

( )tanht t th O C=                                       (11) 

式中， tx 为当前的输入； 1th − 为上一时刻的输出； fW 为 LSTM 遗忘门中神经元的权重矩阵； fb 为 LSTM
遗忘门中神经元的偏置向量； tf 为 LSTM 遗忘门中神经元的输出； iW 为 LSTM 输入门中神经元的权重
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矩阵； ib 为 LSTM 输入门中神经元的偏置向量； ti 为 LSTM 输入门中神经元的输出； oW 为 LSTM 输出

门中神经元的权重矩阵； ob 为 LSTM 输出门中神经元的偏置向量； tO 为 LSTM 输出门中神经元的输出；

σ 为 sigmoid 激活函数； tC 为 LSTM 记忆单元中新的信息； cW 为 LSTM 记忆单元中神经元的权重矩阵；

Cb 为 LSTM 记忆单元中神经元的偏置向量； 1tC − 为上一时刻 LSTM 记忆单元的状态，tanh 为激活函数。 

2.2.2. 误差反向传播神经网络(BP) 
BP 神经网络算法由输入层、隐藏层和输出层组成。设置网络输入层节点数为滑窗长度，输出层节点

数为 1。输入层经过多个隐藏层最终传至输出层，当网络迭代次数大于 100 或误差小于 10−4 时，网络模

型停止训练；反之，将反向传播，通过误差逐层修改网络权值和阈值，通过正向和反向循环传播得到最

优权值和阈值[13]。BP 神经网络结构见图 2 所示。 
 

 
Figure 2. BP neural network architecture diagram 
图 2. BP 神经网络结构图 

 
输入层、隐藏层和输出层之间的关系如下：隐藏层与输入层之间的关系为： 

( )( )1
i

b mb m bmV f xω γ
=

= −∑                               (12) 

输出层与隐藏层之间的关系为： 

( )( )j 1
k

nj n nny f Vθ δ
=

= −∑                               (13) 

式中 mx 为第 m 个输入神经元； mbω 和 njθ 为输入层、隐藏层和输出层间的连接权值； bγ 为隐藏层第 b 个

神经元的阈值； nV 为隐藏层的输出值； nδ 为隐藏层第 n 个神经元的阈值；f 为激活函数，通常是 tanh 函

数。 

2.2.3. LSTM-BP 神经网络 
在不同类型与特征分布的数据集中，各类机器学习算法通常呈现出不同的性能优势。因此，针对具

体问题选择合适的模型对于提升补偿效果具有关键意义。在航空磁法数据处理中，受日变磁场影响所产

生的干扰具有显著的时间相关性与一定程度的非线性特征。BP 神经网络具备较强的静态非线性拟合能力，

而 LSTM 网络尤其擅长处理具有时序依赖的动态数据。基于二者的互补特性，本文构建了一种 LSTM-BP
组合优化的磁补偿方法。 

该方法首先利用 LSTM 网络提取由地磁场变化引起的干扰磁场中所蕴含的时序依赖关系，再通过 BP
网络进一步挖掘残余干扰中的非线性映射特征，从而实现对复杂干扰的精确建模。在传统 Tolles-Lawson 
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(T-L)模型完成线性干扰初步补偿的基础上，LSTM-BP 模型对残余噪声进行学习与拟合，有效抑制标量磁

场测量中的非线性干扰成分，进一步提升了航磁数据的补偿精度。 
 

 
Figure 3. LSTM-BP neural network workflow diagram 
图 3. LSTM-BP 神经网络工作流程图 

 
如图 3 所示，通过设备测量飞机干扰磁场，进行数据预处理后，通过磁场数据构建 T-L 模型，以解

算得到的磁场干扰系数、原始标量磁场以及矢量磁场的方向余弦，时间，姿态角，涡流以及感应磁场的

关于时间动态项等 20 项特征作为 LSTM-BP 组合神经网络的输入,以补偿后地磁场作为网络的输出进行

训练。LSTM 网络凭借其独特的门控机制(输入门、遗忘门、输出门)，具备精准捕捉时序数据中长期依赖

关系的核心优势，同时能够有效抑制训练过程中的梯度消失或梯度爆炸问题，维持梯度传输的稳定性。

基于这一特性，LSTM 网络作为磁场时序数据的特征提取核心，在此基础上，BP 神经网络作为经典的多

层前馈神经网络模型，依托其误差反向传播机制与自适应权值调整策略，能够通过梯度下降法逐层优化

网络连接权重与偏置参数。该过程可充分利用 BP 神经网络强大的非线性映射能力精准刻画经时序特征

提取后磁场数据中蕴含的复杂非线性关系，为后续磁场数据的高精度偏差补偿提供可靠的模型支撑。该

方法通过将传统物理模型与数据驱动算法相结合,通过传统物理模型保证算法的鲁棒性,并通过数据驱动

方式进一步提升补偿精度,最终实现航磁数据的准确获取。 

3. 实验分析 

本章节通过对比不同激活函数下的神经网络模型的补偿效果，选择合适的神经网络结构，并通过仿

真数据，验证 LSTM-BP 神经网络补偿方法对非线性磁干扰的补偿性能。 

3.1. 评价指标 

补偿后磁场数据的峰峰值能够反映磁干扰噪声的最大动态范围，是评价衡量极端干扰幅度和磁补偿

效果的重要指标，而标准差差能够反映磁干扰噪声的离散程度。峰峰值与标准差越小，说明补偿后磁场

数据的稳定性越高，干扰抑制效果越显著[14]。 
在本文中通过补偿后磁场数据的峰峰值和标准差以及改善比来评价方法的补偿性能，公式为： 

( ) ( )_P P MAX B MIN B= −                                   (14) 

( )2

1

1 N

i
i

std x
N

µ
=

= −∑                                     (15) 

before

after

_
_

P P
IR

P P
=                                        (16) 

式中： _P P 是干扰磁场的峰峰值， ( )MAX B 是干扰磁场的最大值， ( )MIN B 是干扰磁场的最小值，std 为

标准差，µ 是数据 ix 的平均值， before_P P 为补偿前的干扰磁场， after_P P 为补偿后的干扰磁场，改善比 IR
反映了补偿系统的性能，改善比越大，说明补偿方法的效果越显著，噪声抑制能力越强。 
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3.2. 数值对比分析 

为了验证 BP 模型和 LSTM 模型的互补特性，通过构造特定磁场对 BP 神经网络模型、LSTM 神经网

络模型和 LSTM-BP 模型进行消融实验，将地磁场设计为恒定场来表示静态特征，使用纯涡流磁场来表示

动态特征。 
 

Table 1. Comparison table of compensation effects under static and dynamic characteristics 
表 1. 静，动态特征下补偿效果对比表 

 静态特征下改善比 动态特征下改善比 

LSTM-BP 19.68 14.33 

BP 12.69 2.80 

LSTM 10.83 8.81 

 
如表 1 所示，在动态特征建模场景下，LSTM 相较于 BP 神经网络表现出显著优势，其时序建模能力

能够有效捕获磁场干扰的动态演化规律；而在静态特征处理场景中，BP 神经网络则展现出更强的特征提

取能力，其全连接结构更适合学习静态背景场的固有模式。LSTM-BP 融合模型在两类特征条件下均实现

了最优的补偿效果，这一现象表明 LSTM 的动态时序建模能力与 BP 的静态特征提取能力形成了有效的

功能互补。 
 

Table 2. LSTM and BP layers, cross comparison of activation functions 
表 2. LSTM 和 BP 层数，激活函数交叉对比 

LSTM 层 BP 层 改善比(IR) 

层数 激活函数 层数 激活函数  

1 tanh 1 tanh 14.116 

1 tanh 1 relu 12.200 

1 sigmoid 1 tanh 5.496 

1 sigmoid 1 relu 3.943 

1 tanh 2 tanh 24.868 

1 tanh 2 relu 5.226 

1 sigmoid 2 tanh 7.909 

1 sigmoid 2 relu 4.310 

2 tanh 1 tanh 10.832 

2 tanh 1 relu 14.194 

2 sigmoid 1 tanh 7.422 

2 sigmoid 1 relu 9.665 

2 tanh 2 relu 16.667 

2 tanh 2 tanh 25.879 

2 sigmoid 2 relu 5.549 

2 sigmoid 2 tanh 6.166 
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在干扰磁场预测方面，采用上面得出的 T-L 模型构造的仿真磁场数据对三种神经网络模型进行训练

验证和测试，前 80%的数据进行训练和验证，后 20%的数据进行测试；利用交叉验证法对 BP 神经网络

的层数(1 层，2 层)、激活函数(tanh, relu)进行优选；对 LSTM 神经网络的层数(1 层，2 层)、激活函数(tanh, 
sigmoid)进行优选；LSTM-BP 神经网络参数优选结果如表 2。 

通过上表的对比，单 LSTM + 双 BP 与双层 LSTM-BP 的补偿改善比相差不大，但是在 cpu 为 i5-
12400F 的环境下，前者的运行时间比后者短，效率更高，因此本文选择以单层 LSTM-双层 BP，并以 tanh
作为激活函数进行实验。 

3.3. 仿真实验 

通过加入涡流项的非线性干扰的 T-L 模型构建仿真总磁场。磁场数据如图 4 所示。 
 

 
Figure 4. Total magnetic field 
图 4. 总磁场 

 
通过仿真磁场数据，对组合神经网络与单一神经网络，以及与 GRU-BP 神经网络补偿效果对比，以

组合神经网络对非线性干扰的进一步的补偿性能。 
设置 LSTM-BP 神经网络层数单层 LSTM 加 BP 两层隐藏层，LSTM 神经单元数为 64，BP 神经单

元数分别为 64 和 32，学习率为 10−3，训练迭代次数为 100 次，激活函数为默认 tanh，补偿效果图如

图 5。设置 GRU-BP 神经网络中 GRU 神经单元数为 64，BP 神经单元数分别为 64 和 32，学习率为

10−3，训练迭代次数为 100 次，激活函数为默认 tanh，补偿效果图如图 6。设置 LSTM 神经网络神经

单元数为 64，学习率为 10−3，训练迭代次数为 100 次，激活函数为默认 tanh + sigmoid，补偿效果图

如图 7。根据图 7 可知，经过单一 LSTM 神经网络补偿后，尽管在动态非线性特征补偿方面取得了一

定成效，但该模型在静态非线性特征的拟合精度上仍存在明显不足。设置 BP 神经网络隐藏层数 2 层，

神经单元数分别为 128 和 64，学习率为 10−3，训练迭代次数为 100 次，激活函数为 tanh，补偿效果图

如图 8。根据图 8 可知，经过单一 BP 神经网络补偿后，数据波动较大，对于动态非线性特征拟合较

差。 
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Figure 5. Schematic diagram of LSTM-BP neural network compensation 
图 5. LSTM-BP 神经网络补偿示意图 

 

 
Figure 6. Schematic diagram of GRU-BP neural network compensation 
图 6. GRU-BP 神经网络补偿示意图 

 

 
Figure 7. Schematic diagram of LSTM neural network compensation 
图 7. LSTM 神经网络补偿示意图 
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Figure 8. Schematic diagram of BP neural network compensation 
图 8. BP 神经网络补偿示意图 

 

 
Figure 9. Comparison chart of compensation results 
图 9. 补偿结果对比图 

 
从补偿结果对比图 9 可以看出，在 4 种补偿算法的对比中，基于 LSTM-BP 磁补偿算法表现出最佳

的补偿效果。与单一神经网络模型相比，该算法充分结合两者的优势，拟合了动静态非线性特征，显著

降低了磁场数据中的峰峰值，补偿后的磁场变化趋势更加平稳，整体表现更加优异。与 GRU-BP 神经网

络模型对比，在相同输入特征与训练策略条件下，LSTM-BP 组合神经网络在航磁干扰补偿性能上优于

GRU-BP 等对照模型。尽管 GRU 结构在参数规模和训练效率方面具有一定优势，但 LSTM 网络通过引

入独立的记忆单元，能够更充分地建模航磁干扰信号中存在的长期与短期时间依赖关系，因此在复杂动

态干扰场景下获得了更优的补偿效果。 
由表 3 可知，经过四种方法补偿前后标准差由 1056.53、1729.11、1568.27、1391.39 分别下降到 34.27、

100.317、127.515、410.11。磁场数据补偿前的峰峰值分别为 11968.55nT、19718.07nT、19718.07nT 、
15843.31nT 经过 4 种补偿方法处理后，峰峰值均显著下降，其中，基于 LSTM-BP 磁补偿算法的补偿后
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峰峰值降至 478.44nT，相较于补偿前减少了两个数量级。此外，该算法的磁场数据改善比达到 25.02，相

较于其他 3 种算法，改善比分别提高了 11.72、15.73、21.6，显示出明显优势。结合补偿结果对比表与相

关补偿指标可以得出，基于 LSTM-BP 磁补偿算法在抑制磁干扰和提升补偿效果方面优于其他 3 种方法。 
 

Table 3. Comparison table of compensation results 
表 3. 补偿结果对比表 

神经网络 补偿前峰峰值(nT) 补偿后峰峰值(nT) 补偿前标准差 补偿后标准差 改善比 

LSTM-BP 11968.55 478.44 1056.53 34.27 25.02 

GRU-BP 19718.07 1484.378 1729.11 100.317 13.28 

LSTM 19718.07 2122.51 1568.27 127.515 9.29 

BP 15843.31 4632.54 1391.39 410.11 3.42 

4. 结论 

传统 T-L 磁补偿方法主要依赖线性模型构建，对于复杂飞行条件下的非线性干扰抑制能力有限。针

对这一问题，本文提出了一种基于 LSTM-BP 的组合式磁补偿算法。试验结果表明，LSTM 网络在提取磁

数据中的时间依赖特征方面具有明显优势，能够有效捕获由日变及飞行姿态变化引起的动态干扰模式；

而 BP 神经网络具备出色的非线性逼近能力，可进一步对 LSTM 所提取的深层序列特征进行非线性映射，

从而增强模型的表达能力。 
与单一神经网络模型相比，组合式 LSTM-BP 结构在特征表达和建模能力上形成互补：LSTM 负责学

习时间序列中的动态特性，BP 则专注于静态非线性关系的拟合，能够有效避免单一模型在处理复杂干扰

时出现的特征提取不足或拟合能力受限的问题。因此，LSTM-BP 模型在有限磁数据条件下仍能实现对航

磁数据中关键特征的准确提取与深度建模，从而显著提升非线性干扰的补偿效果。 
与 GRU-BP 结构对比，LSTM-BP 组合神经网络在航磁干扰补偿精度方面优于 GRU-BP 神经网络模

型。分析认为，LSTM 网络通过引入记忆单元与门控机制，能够更有效地刻画航磁干扰中存在的长短期

时间相关性，从而在复杂动态磁干扰条件下表现出更稳定的补偿性能。 
在基于 T-L 模型仿真生成干扰磁场数据的基础上，本文分别采用 LSTM-BP、GRU-BP、BP 神经网络

以及 LSTM 神经网络进行补偿对比。通过补偿后改善比的定量分析可知，LSTM-BP 算法在抑制非线性干

扰方面表现最为优越，使补偿后的标量磁场峰峰值显著降低，充分验证了其可行性与性能优势。 
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