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摘  要 

针对当前卷积神经网络(CNN)在建模长距离依赖上的局限，以及视觉Transformer因自注意力机制导致

的参数量庞大问题，本文提出一种双路径混合模型——NexusNet。该模型通过深度融合CNN的局部表示

分支与Transformer的全局建模分支，实现了局部细节特征与全局语义信息的协同编码，在显著提升特

征表征能力的同时保持了精简的参数量。在CNN分支中，我们引入了融合动态权重分配与上下文增强机

制的新型模块，以增强对判别性局部结构的捕捉能力；在Transformer分支中，采用分层建模与线性复

杂度设计，大幅降低了长距离依赖建模的资源开销。此外，设计了一种自适应多层次特征融合模块，通

过通道与空间注意力引导的多尺度特征整合，实现跨架构信息的高效聚合与参数优化。在两个面部颜色

识别数据集上的实验表明，NexusNet在保持模型轻量化的前提下，分类准确率分别达到88.99%和

79.25%，并在多项评价指标上优于现有主流方法，验证了其在局部-全局特征融合与模型轻量化方面的

有效性与泛化能力。 
 
关键词 

图像分类，面部颜色识别，双路径混合架构，特征融合 
 

 

NexusNet: A Dual-Path Hierarchical Fusion 
Hybrid Network for Facial Color Recognition 
Qianshuai Sun, Yue Feng, Zhuosheng Lin, Jiexin Liang, Xue Zhao, Zihao Liu 
School of Electronics and Information Engineering, Wuyi University, Jiangmen Guangdong 
 
Received: December 6, 2025; accepted: January 7, 2026; published: January 15, 2026   

 
 

 
Abstract 
To address the limitations of Convolutional Neural Networks (CNNs) in modeling long-range 
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dependencies and the high parameter complexity of Vision Transformers, this paper proposes a 
dual-path hybrid model, NexusNet. The model integrates a CNN-based pathway for local feature ex-
traction with a Transformer-based pathway for global context modeling, enabling effective fusion 
of fine-grained details and semantic information while maintaining model compactness. In the CNN 
pathway, we introduce a novel module that combines dynamic weight allocation with a context en-
hancement mechanism to improve discriminative local feature capture. The Transformer pathway 
employs a hierarchical structure with linear complexity to efficiently model long-range dependen-
cies. Furthermore, we design an adaptive multi-level feature fusion module that leverages both 
channel and spatial attention to guide the integration of multi-scale features from both architectures, 
promoting efficient information aggregation. Experimental results on two facial color recognition da-
tasets demonstrate that NexusNet achieves classification accuracies of 88.99% and 79.25%, respec-
tively, and outperforms existing methods across multiple metrics. This validates the model’s strong 
performance and generalization ability in joint local-global representation learning and efficient 
model design. 
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1. 引言 

在在中医诊断体系中，面色分析历来是望诊的核心环节。临床诊断将面部色泽系统划分为正常色泽

与病理色泽两大类别，其中病理色泽又可细分为青、赤、黄、黑、白五种基本类型[1]。医师通过综合观

察这些色泽特征，结合其他诊法信息，完成对患者健康状态的评估。然而，传统面色诊断方法长期依赖

医师的主观经验，面临着客观化不足的瓶颈。 
随着人工智能技术的突破性进展，计算机视觉在医学图像分类领域展现出显著优势。特别是深度学

习技术的引入，为面色识别提供了新的技术路径。林怡等人[2]将 AlexNet、VGGNet、ResNet 等经典卷积

神经网络架构应用于中医面色分类，取得了 83.96%的识别准确率，证实了深度学习在该领域的应用潜力。

赵康辉等人[3]基于 MobileViT 网络构建的面色分类器更是将准确率提升至 94.1243%，展现了轻量级视觉

Transformer 在移动医疗场景中的独特优势。此外，Yang 等人[4]通过 Transformer 架构实现皮肤病变的精

准识别，为面色诊断提供了重要的技术借鉴。这些研究表明，将现代人工智能技术与传统中医理论相结

合，不仅能有效提升面色识别的客观性和准确性，也为中医诊断的标准化和智能化发展开辟了新的技术

路径。 
尽管 CNN 与 Transformer 在面色分类中已取得显著成果，但仍存在以下挑战。 
1) 传统 CNN 架构在全局上下文建模方面存在局限。由于卷积操作的局部性特征，这类网络难以有

效建立长距离依赖关系，同时对输入数据的空间变换缺乏足够的适应能力[5]。 
2) Transformer 架构严重依赖位置编码来构建空间关系，其将图像分割为序列的处理方式破坏了原

有的空间连续性。此外，自注意力机制参数量随图像分辨率提升呈二次方增长，导致高昂的计算资源

需求。 
因此，本文旨在设计一种较为轻量化的双路径混合网络 NexusNet，通过实现局部细节与全局语义的

协同建模，为面向真实复杂场景的面色识别任务提供一种结构紧凑且性能可靠的解决方案。 
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2. NexusNet 模型架构 

 
Figure 1. NexusNet network architecture 
图 1. NexusNet 网络架构 

 
针对现有技术瓶颈，本文构建了基于 ConvNeXt [6]的局部特征分支与 Swin Transformer [7]的全局特

征分支并行架构模型 NexusNet，如图 1 所示。该设计使模型能够同时捕获图像细节特征与长程依赖关系，

其中局部分支通过深度可分离卷积与 CTRGC 图卷积[9]增强特征表示能力，全局分支则利用改进的 Swin 
Transformer V2 [8]模块架构实现跨窗口语义交互。双分支结构在不显著增加参数量的前提下，有效协调

了局部感知与全局建模的互补优势。本研究主要具备以下技术优势： 
1. 为解决传统 CNN 架构在全局上下文建模和空间变换适应性方面的局限，我们在 CNN 分支中创新

设计了卷积融合模块(Convolutional Fusion Module, ConvFusion)。该模块采用深度可分离卷积与 CTRGC
图卷积的并行双路径架构，其中 CTRGC 图卷积专门用于建立长距离依赖关系，有效扩展了传统卷积的

感受野范围。同时，模块引入的可学习动态权重分配机制能够自适应调整各路径贡献度，使网络根据不

同输入特征自动优化特征提取策略，显著增强了对空间变换的适应能力。无参数 SimAM 注意力机制[10]
引入进一步提升了特征表征的判别性，在保持计算效率的同时实现了局部特征与全局上下文的高效融合。

这一设计有效克服了传统 CNN 因参数冗余而易出现的过拟合问题。 
2. 为解决 Transformer 架构在空间连续性保持方面的固有局限，我们在 Transformer 分支中创新设计

了视觉模块(Vision Transformer Block, VisionBlock)。该模块基于改进的 Swin V2 模块架构，采用分层窗

口注意力机制替代传统的序列化处理，有效维护了图像的空间连续性。通过引入连续相对位置偏置，该

模块在不依赖显式位置编码的情况下保持了精确的空间结构信息，显著降低了模型对位置编码的依赖性。

在参数量方面，模块集成的基于对数间隔缩放因子的余弦注意力机制，将计算复杂度从二次方降低至线

性级别，大幅减少了对计算资源的需求。同时，归一化层 RMSNorm [11]的采用不仅提升了训练稳定性，

还进一步优化了参数效率。结合 SwiGLU 激活的 MLP 感知层增强非线性表征能力，该模块在有限样本条

件下实现了长程依赖与局部特征的精准建模，为高分辨率图像处理提供了高效的解决方案。 
3. 在 CNN 与 Transformer 之间我们设计了特征融合模块(Feature Merge Block, MergeBlock)，构建了

多层次特征融合通路，通过高效多尺度通道注意力与轻量级空间注意力的协同作用，实现了跨模态特征
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的精细整合。该模块采用 GhostConv [12]减少参数冗余，集成特征重校准机制动态调整各路径贡献权重，

并通过 GhostIRMLP 结构强化特征变换能力。该设计显著提升了模型在复杂场景下数据稀缺时的性能衰

减问题。 

2.1. 卷积融合模块(Convolutional Fusion Module) 

 
Figure 2. ConvFusion module architecture 
图 2. ConvFusion 模块架构 

 
ConvFusion 模块结构见图 2，首先接受输入特征 B C H Wx × × ×∈ ，然后通过的并行双分支架构进行多层

次特征提取，其中深度卷积分支利用 3 × 3 深度可分离卷积(DW)以参数高效的方式捕捉局部空间模式和

细节特征，同时 CTRGC 图卷积分支通过将特征图重塑为图结构数据并应用通道–空间关系图卷积来建

模全局上下文关系和长程依赖，这种双路并进的设计使得模块能够同时从局部细节和全局结构中汲取互

补信息，随后两个分支的输出通过基于可学习权重的自适应融合机制进行智能整合，公式如下： 

( ) ( ) ( ) ( )( )soft max [0] soft max [1] reshapex w DWConv x w CTRGC x= ⋅ + ⋅                (1) 

其中 w 为可学习的融合权重向量。该机制通过 Softmax 归一化的融合权重动态平衡局部特征与全局关系

的相对重要性，实现了一种自适应的特征选择与增强策略，融合后的特征紧接着通过无参数 SimAM 注意

力模块，该注意力机制通过计算每个神经元相对于整个特征图的显著性和能量值，并以 sigmoid 函数激活

后作为注意力权重，能够自主地增强信息丰富的特征通道并抑制冗余或噪声响应，公式如下： 

( )
( )

2

2
0.5

4
x

att
x

x
x x

µ
σ

σ

 − = +
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
                                  (2) 
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其中 xµ 与 2
xσ 表示特征 x 在空间维度中的均值与方差，σ 表示 Sigmoid 函数。经过注意力训练后的特征随

后进入特征精炼阶段，通过通道维度重排、层归一化(LayerNorm)稳定训练过程、线性变换(Linear)进行特

征投影以及 GELU 激活函数引入非线性变换，这一系列操作共同完成了特征的深度加工与维度适配，公

式如下： 

( )( )( )( )1
out attx permute GELU W LayerNorm permute x−= ⋅                      (3) 

最终，处理后的特征通过带有随机深度正则化(DropPath)的残差连接与原始输入相加，这种设计不仅

缓解了深度网络中的梯度消失问题，确保了训练稳定性，还通过随机路径丢弃提供了类似模型集成的正

则化效果，使整个模块在保持强大表征能力的同时兼具优秀的泛化性能和训练效率。 

2.2. 视觉模块(Vision Transformer Block) 

 
Figure 3. VisionBlock module architecture 
图 3. VisionBlock 模块架构 

 
VisionBlock 模块具体结构见图 3，其工作流程起始于输入特征通过 RMSNorm 层处理，计算公式如

下： 

( )
2

1

1 C
ii

xRMSNorm x
x

C

γ

=

=
+∑



                               (4) 

其中C 为通道数，γ 为可学习缩放参数，为稳定常数。随后归一化后的特征进入窗口注意力机制(Window 
Attention)进行处理，该机制首先将特征划分为局部窗口并应用基于缩放余弦注意力(Scaled Cosine 
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Attention)的多头自注意力计算，计算公式如下： 

( ) ( )
2 2

,

1soft max min exp ,
0.01

norm norm

T
norm norm rel

Q KQ K
Q K

x s Q K B

= =

  = ⋅ +  
  

                       (5) 

其中，s 为对数缩放因子， relB 为连续相对位置偏置。该设计是通过查询(Q)和键(K)向量进行 L2 归一化，

再通过可学习的对数间隔缩放因子来稳定训练过程，同时融入连续相对位置偏置(Add Relative Bias)以编

码空间结构信息，并可选地使用移位窗口策略实现跨窗口连接，随后注意力输出通过残差连接与原始输

入相加以保留底层特征信息。接着特征输入到归一化后的增强型 SwiGLU 多层感知机，计算公式如下： 

( ) ( ) ( )1 2SwinGLU x SiLU W x W x=                                (6) 

该结构通过双线性投影生成两个并行特征流并采用 SiLU 激活的门控相乘机制(Gated Multiplication)
实现动态特征选择与融合，从而增强非线性表达能力；最终再次通过残差连接整合输出，整个模块融合

了局部注意力建模与全局特征变换的优势，结合 RMSNorm 归一化、随机深度丢弃和移位窗口等技术，

在保持卓越特征提取能力的同时确保了训练稳定性。 

2.3. 特征融合模块(Feature Merge Block) 

 
Figure 4. MergeBlock module architecture 
图 4. MergeBlock 模块架构 

 
MergeBlock 模块的核心创新在于其层级化融合架构，如图 4 所示，它系统性地集成了 GhostConv、

https://doi.org/10.12677/csa.2026.161013


孙千帅 等 
 

 

DOI: 10.12677/csa.2026.161013 160 计算机科学与应用 
 

多尺度通道注意力(MultiSE Attention)、轻量级空间注意力(Spatial Attention)、GhostIRMLP 以及条件残差

连接等关键模块。该模块通过三级融合流程进行工作：在早期投影融合阶段，首先接受来自 CNN 分支和

VIT 分支的特征，利用 GhostConv 将不同源的特征映射到统一维度并进行初步交互，计算公式如下： 

( ) ( ) ( )( )( )Ghost Concat Primary ,Cheap PrimaryConv x Conv x Conv Conv x=               (7) 

其中 PrimaryConv 生成少量高质量特征，CheapConv 通过深度可分离卷积等生成大量廉价特征，实现参数

量和计算量的显著降低(见图 5(a))。随后进行中期加权融合首先对输入特征分别进行注意力增强，VIT 分

支特征通过 MultiSEAttention 处理，其注意力权重生成公式为： 

( ) ( )( )( )( )( )2 / / 3 3 5 5ReC r C C r C rA Conv LU Conv f x f xσ → → × ×= +                   (8) 

该机制引入 3 × 3 与 5 × 5 两组不同尺度的深度可分离卷积并行提取特征，相对于传统需要高昂资源

的通道注意力机制，大幅减少了计算开销。CNN 分支特征通过 SpatialAttention 处理，同样采用多尺度深

度可分离卷积。随后，通过可学习的动态权重对这三个特征(原始 A 经通道注意力、原始 B 经空间注意力、

以及早期融合结果 Mergex 进行自适应整合，实现特征重校。接着，融合后的特征由 GhostIRMLP 进行非线

性变换与精炼，计算公式为： 

( ) ( )( )( )( )( ) ( )3 2 1Ghost ProjIRMLP x Conv GELU Conv BN Conv x x x= + +              (9) 

GhostIRMLP  (见图 5(b))融合了倒残差结构与 GhostConv 的优势，以较低的计算成本增强了模型的表

征能力。最后，在晚期融合阶段，通过条件残差连接将精炼后的特征与来自上层的早期融合结果(当存在

上层特征 Mergex 时)，并结合 DropPath 进行正则化，实现了信息的高效保留与梯度稳定传播。该模块的整

体设计体现了模块化与自适应处理的核心思想，能够灵活、高效地实现多源、跨尺度的特征融合，并显

著降低了计算与存储资源的开销。 
 

 
Figure 5. GhostConv and GhostIPMLP module architectures 
图 5. GhostConv 与 GhostIPMLP 模块结构 
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3. 实验 

3.1. 数据集 

为系统评估 NexusNet 在面色分类任务中的性能，本研究在两个具有不同采集条件的中医面色数据集

—Face5c 与 Face3c 上进行了对比实验。所有数据均在专业中医师指导下完成标注，统一遵循红、黄、青、

白、黑五类面色分类标准。两个数据集的样本分布情况分别如图 6 与图 7 所示。在实验划分上，采用分

层抽样方法将各数据集按 8:1:1 的比例划分为训练集、验证集与测试集，以保证数据分布的均衡性与实验

结果的可靠性。 
(1) Face5c 数据集 
该数据集基于标准化的中医面舌诊仪采集构建。图像采集于严格控制的光照环境：色温维持在

5000~6000 K，显色指数高于 95，照度稳定在 3600 lx 左右。样本来源包括在校学生群体及江门市中心医

院的临床志愿者，涵盖红、黄、青、白、黑五类面色数据。具体分布为：面色红样本 238 例，面色黄样

本 223 例，面色白样本 54 例，面色黑样本 18 例，面色青样本 10 例，共计 543 例有效数据。 
 

 
Figure 6. Face5c dataset sample distribution 
图 6. Face5c 数据集样本分布 

 
(2) Face3c 
Face3c 数据集由上海中医药大学采集构建。与 Face5c 数据集相比，该数据集在面色类别上更为集

中，仅包含红、黄、白三类面色样本，未涵盖黑与青两种面色类别。其数据构成如下：面色黄样本 383 例，

面色红样本 308 例，面色白样本 116 例，样本总量为 807 例。 
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Figure 7. Face3c dataset sample distribution 
图 7. Face3c 数据集样本分布 

3.2. 实验设置 

本实验在 Windows 11 系统下基于 PyTorch 框架进行，使用 NVIDIA RTX A5000 GPU 进行模型训练。

输入图像统一预处理为 224 × 224 像素，训练阶段使用随机裁剪和水平翻转进行数据增强。使用 AdamW
优化器进行 300 个 epoch 的训练，初始学习率为 1e-4 并配合余弦退火学习率调整策略，同时通过

TensorBoard 对训练过程中的损失、准确率及学习率变化进行实时监控与记录。 

3.3. 评估指标 

为量化评估模型在分类任务中的性能，本文选用准确率(Accuracy，Acc)、精确率(Precision，AP)、召

回率(Recall，AR)以及特异度(Specificity，AS)四项指标。各指标基于混淆矩阵中的真阳性(TP)、真阴性(TN)、
假阳性(FP)与假阴性(FN)进行计算(见公式 33)。准确率反映模型整体分类的正确比例，但在类别分布不均

衡的任务中，该指标容易因多数类样本主导而虚高，导致对少数类识别性能的判断失准，因此仅依靠准

确率评价模型性能具有较大局限性。 

Precision

Recall

Specificity

Accuracy

TP
T

TP TN
TP TN FP FN

P FP
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TP FN
TN

TN FP

+
=
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=
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                             (10) 
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3.4. 损失函数 

本实验采用了交叉熵损失函数(Cross-Entropy Loss)，该函数直接优化预测概率与真实标签的分布差

异，为分类任务提供了清晰且稳定的梯度信号，能够有效驱动模型快速收敛并提升分类准确率。 

( ), ,
1 1

1 ˆlog
N k

CE n i n i
n i

L y y
N = =

= − ∑∑                                (11) 

N 为批次中样本总数，k 为类别数量， ,n iy 为第 n 个样本在类别 i 上真实标签， ,ˆn iy 为模型预测第 n 个

样本属于类别 i 的概率。 

4. 实验结果与分析 

4.1. 定量分析 

为全面评估模型在面部颜色识别任务中的性能，本研究将所提出的 NexusNet 与当前主流分类模型进

行系统对比，涵盖 VGG [13]、ResNet [14]、DenseNet121 [15]、ConvNeXt [6]、Vision Transformer [16]、
Swin Transformer [7] [8]、MobileViT [3]以及 HiFuse [17]等方法。实验结果表明，凭借其创新的双路径混

合架构设计，NexusNet 在 Face3c 与 Face5c 两个数据集上均实现了全面领先的性能表现，详细量化结果

如表 1 与表 2 所示。 
为进一步分析各模型的分类依据与特征响应模式，我们针对两个数据集绘制了类别激活热力图。为

清晰呈现对比，相同架构系列中选取性能最优的模型进行可视化，不同模型间的热力图对比如图 8 所示。

该可视化结果有助于直观理解模型在面色识别任务中的注意力分布与决策机制。 
与传统 CNN 相比，其依赖局部卷积操作、难以建模长距离依赖的固有限制，在面对需要全局上下文

理解的面色识别任务时表现出了明显短板。例如，VGG 系列虽结构规整，但其参数量巨大且性能平庸，

在 Face5c 数据集上准确率(Acc)仅约 60%~65%；ResNet 与 DenseNet 通过残差或密集连接缓解了梯度问

题，在 Face3c 上取得了 80%以上的 Acc，但其纯卷积架构在全局语义整合上仍存在瓶颈，导致在更复杂

的 Face5c 上性能提升有限，且热力图显示其注意力区域常存在背景干扰。ConvNeXt 在 Face5c 上的精确

率(AP)更是大幅降至 39.46%，凸显了传统卷积范式在复杂场景下的适应不足。NexusNet 通过其局部分支

的 ConvFusion 模块，创造性地融合了深度卷积与 CTRGC 图卷积，在提取局部细节的同时显式构建了跨

区域的上下文关联，从而有效克服了传统 CNN 的感受野局限。这使得 NexusNet 在 Face3c 和 Face5c 上

均取得了最高的准确率(分别为 88.99%和 79.25%)，其热力图也展现出对面部核心区域更精准、集中的聚

焦能力，背景抑制效果显著。 
与纯视觉 Transformer 模型相比，其依赖大规模预训练且在处理小样本数据时泛化能力不稳定的问题

在本任务中十分明显。标准的 ViT-B/16 模型在从 Face3c 迁移到 Face5c 时，精确率(AP)从 78.78%急剧下

降至 42.14%；采用层次化设计的 Swin Transformer 系列虽有所改善，但 Swin V2 在 Face5c 上的召回率

(AR)也仅为 48.55%。热力图显示，这些模型的注意力响应常呈零散、碎片化分布，难以形成对目标整体

连贯的理解。NexusNet 的全局分支 VisionBlock 模块，基于改进的 Swin V2 架构，采用线性复杂度的缩

放余弦注意力和连续相对位置偏置，在高效捕获长程依赖的同时，大幅降低了对海量数据和超高算力的

依赖。因此，NexusNet 在数据分布更具挑战性的 Face5c 上仍能保持 74.55%的高精确率和 69.69%的召回

率，其热力图也表现出对目标区域更稳定、完整的关注。 
与现有的先进混合架构相比，如轻量级的 MobileViT 和特征融合网络 HiFuse，它们在试图结合 CNN

与 Transformer 优势的同时，往往在参数效率、性能均衡性或泛化稳健性上做出了新的妥协。MobileViT
虽专为移动端设计，但在本任务的数据集上表现不佳，在 Face5c 上的 AP 仅为 44.98%，其热力图虽然红
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色显著区域显著，但常分散于目标边缘或目标与背景交界之处，定位精度不足。HiFuse 在 Face3c 上取得

了最高的单一精确率指标(AP 89.62%)，但其参数量高达 123.26M，且当面对类别更复杂的 Face5c 时，AP
指标大幅下降 25.28%，显示出明显的过拟合倾向和泛化短板，并且其热力图中所示显著响应区域多出现

在图像边缘。与之形成鲜明对比的是。NexusNet 通过其自适应多层次特征融合模块(MergeBlock)，以多

尺度注意力机制和 Ghost 卷积等轻量化技术，实现了双路径特征的高效、自适应融合。在将总参数量显

著控制在 73.37M(远低于 HiFuse)的前提下，NexusNet 不仅在 Face3c 上获得了最优的综合准确率(Acc)、
召回率(AR)和特异度(AS)，更在 Face5c 上展现了卓越的泛化稳定性，各项性能指标下降幅度最小，热力

图始终能准确锁定核心特征并有效排除干扰。 
综上所述，定量指标与可视化证据共同验证了 NexusNet 架构的有效性。它通过 ConvFusion 模块增

强了传统 CNN 的上下文建模能力，通过 VisionBlock 模块降低了纯 Transformer 的数据与计算依赖，并通

过 MergeBlock 模块以更高参数效率实现了比现有混合模型更优的性能均衡与泛化鲁棒性。这使其为数据

规模有限、应用场景复杂的真实世界面色识别任务，提供了一个高效且可靠的解决方案。 
 

Table 1. Comparison of experimental results on the Face3c dataset 
表 1. Face3c 数据集上的实验结果对比 

Network Acc (%) AP (%) AR (%) AS (%) Parameters (M) 

VGG11 80.37 73.89 74.95 88.36 128.78 

VGG13 79.36 74.39 77.69 89.95 134.27 

VGG16 82.65 76.25 78.96 88.24 139.58 

ResNet34 85.66 81.67 80.63 89.87 21.56 

ResNet50 85.78 82.29 79.56 89.90 22.65 

DenseNet121 83.26 81.95 80.36 89.25 8.95 

ConvNeXt 77.22 73.99 74.19 87.72 87.57 

ViT-B/16 81.01 78.78 81.6 90.16 85.80 

ViT-B/32 82.41 76.32 77.76 90.35 86.75 

Swin V1 82.28 79.41 78.64 90.52 86.45 

Swin V2 83.36 80.21 77.95 90.45 87.86 

MobileViT 86.08 81.39 78.88 91.42 5.35 

HiFuse 86.08 89.62 82.96 91.72 123.26 

NexusNet 88.99 87.39 83.31 92.04 73.37 

 
Table 2. Comparison of experimental results on the Face5c dataset 
表 2. Face5c 数据集上的实验结果对比 

Network Acc (%) AP (%) AR (%) AS (%) Parameters (M) 

VGG11 60.48 49.89 49.59 79.48 127.74 

VGG13 62.45 51.49 50.68 80.46 133.17 

VGG16 64.69 57.95 52.36 81.25 135.28 

ResNet34 73.83 74.06 73.83 91.74 21.34 

ResNet50 76.42 74.35 62.09 92.29 23.52 
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续表 

DenseNet121 77.36 54.06 56.39 92.76 6.96 

ConvNeXt 73.58 39.46 35.72 90.89 88.25 

ViT-B/16 73.45 42.14 41.93 91.1 84.95 

ViT-B/32 72.64 39.55 38.36 90.74 87.46 

Swin V1 75.47 42.13 42.81 92.05 86.75 

Swin V2 76.95 45.28 48.55 91.37 88.26 

MobileViT 78.30 44.98 50.39 91.99 6.21 

HiFuse 78.26 64.34 59.51 92.72 123.27 

NexusNet 79.25 74.55 69.69 92.77 73.37 

 

 
Figure 8. Comparison of heatmaps for different model classifications 
图 8. 不同模型分类热力图对比 

4.2. 消融实验 

为了系统验证 NexusNet 各模块如何协同解决模型设计的核心挑战——即传统 CNN 的远程建模不足

与 Transformer 的高计算依赖问题，我们在 Face5c 与 Face3c 数据集上进行了循序渐进的消融研究。结果

如表 3 与表 4 所示。 
实验始于一个仅具备基础特征融合能力(MergeBlock)的基准模型。在更复杂、类别不均衡的 Face5c

数据集上，该模型取得了 73.90%的准确率，但其较低的精确率(50.26%)与召回率(46.95%)表明，未增强的

融合框架对复杂特征的建模能力有限。而在 Face3c 数据集上，其基础性能(Acc 77.95%, AP 77.59%)相对

更好，印证了模型具备初始有效性，同时也凸显了性能的上升空间。引入 GhostIRMLP 模块后，Face5c 的
准确率升至 74.25%，精确率与召回率分别提升 1.42%与 2.52%，Face3c 的准确率也提高至 79.19%。这表明

该模块通过高效的 Ghost 卷积与残差结构，以较低的参数成本增强了特征的非线性表达能力，为模型后续

的复杂特征处理提供了更有效的基础。随后加入的 MultiSEAttention 与 SpatialAttention 机制带来了更显著

的提升。在 Face5c 上，精确率从 51.68%大幅跃升至 60.59%，召回率也同步增长；Face3c 的召回率则从

77.58%提升至 80.99%。这一变化证明，双重注意力机制通过自适应地聚焦于关键通道与空间区域，有效增

强了模型在复杂场景中筛选判别性特征、抑制背景干扰的能力，显著提升了特征选择的鲁棒性。 
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之后 CNN 分支嵌入的 ConvFusion 模块产生了关键性突破。该模块在 Face5c 上推动准确率大幅增长

至 78.95%，精确率更是从 60.59%跃升至 73.65%；在 Face3c 上，准确率也从 80.34%提升至 84.49%。这

一跨越式进步直接证实，通过融合深度卷积与 CTRGC 图卷积并引入动态权重分配，ConvFusion 有效建

立了长距离特征依赖，从根本上增强了 CNN 路径的上下文建模能力，解决了传统卷积网络在复杂识别任

务中的核心短板。最后，Vision Transform 分支引入改进的 VisionBlock 模块进一步优化了全局建模的稳

定性与效率。在 Face3c 数据集上，其贡献最为突出，将准确率从 84.49%最终提升至 88.99%，实现了最

优性能；在 Face5c 上，模型性能也得到进一步巩固，准确率达到 79.25%，精确率提升至 74.55%。这表

明该模块基于层次化窗口注意力与线性复杂度的设计，在显著降低计算开销的同时，有效保障并完善了

模型对全局语义的理解与整合。 
消融实验清晰地揭示，NexusNet 的卓越性能源于其各组件针对性的协同设计：ConvFusion 解决了

CNN 的远程建模局限，VisionBlock 实现了 Transformer 的高效化，双重注意力与 GhostIRMLP 则分别强

化了特征选择与变换的效率。所有这些创新最终通过 MergeBlock 有机整合，使得模型在严格的控制参数

量下，实现了局部细节与全局语义的高效平衡与协同。这不仅验证了双路径混合架构思想的正确性，也

完整展示了 NexusNet 如何系统性、递进式地攻克了当前视觉识别模型面临的关键挑战。 
 

Table 3. Ablation experiments on the Face5c dataset 
表 3. Face5c 数据集上消融实验 

 Acc (%) AP (%) AR (%) AS (%) 

MergeBlock 73.90 50.26 46.95 89.26 

+ GhostIRMLP 74.25 51.68 49.47 90.01 

+MultiSEAttention and SpatialAttention 75.85 60.59 52.85 90.58 

+ ConvFusion 78.95 73.65 69.36 92.69 

+ VisionBlock 79.25 74.55 69.69 92.77 

 
Table 4. Ablation experiments on the Face3c dataset 
表 4. Face3c 数据集上消融实验 

 Acc (%) AP (%) AR (%) AS (%) 

MergeBlock 77.95 77.59 76.86 88.65 

+ GhostIRMLP 79.19 79.68 77.58 89.17 

+MultiSEAttention and SpatialAttention 80.34 80.25 80.99 90.24 

+ ConvFusion 84.49 83.26 82.21 91.05 

+ VisionBlock 88.99 87.39 83.31 92.04 

5. 结语 

本研究提出了一种融合局部感知与全局建模优势的双分支视觉架构 NexusNet，旨在协同解决卷积神

经网络在长距离依赖建模上的局限性与视觉 Transformer 因自注意力机制导致的参数量过大的问题。该模

型通过引入层次化特征融合机制，将 CNN 的局部细节提取能力与基于窗口的 Transformer 的全局依赖建

模能力有机结合。具体而言，其局部分支通过 ConvFusion 模块集成 CTRGC 图卷积与 SimAM 注意力，

增强了对多尺度局部特征的表达能力与空间适应力；全局分支借助 VisionBlock 模块引入 Swin V2 的缩放
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余弦注意力、连续相对位置偏置及 SwiGLU MLP，在显著降参数量的同时保持了对长程上下文的高效建

模；最后，通过分层级联的 MergeBlock 模块对双分支特征进行自适应加权融合，实现了从底层细节到高

层语义的渐进式信息整合。 
实验结果表明，NexusNet 在图像分类任务上展现出优越性能。该模型通过并行双路结构与三级融合

策略，在显著减少模型参数量的同时，保持了优异的表征能力，从而有效提升了资源利用率；其可学习

的动态融合权重与空间–通道协同注意力机制，进一步增强了特征选择的适应性、鲁棒性以及对关键信

息的聚焦能力。NexusNet 的设计不仅为异构视觉特征融合提供了一种高效且可扩展的解决方案，也为面

向实际部署的、资源受限的视觉模型研究提供了有价值的架构参考。 
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