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Abstract

To address the limitations of Convolutional Neural Networks (CNNs) in modeling long-range
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dependencies and the high parameter complexity of Vision Transformers, this paper proposes a
dual-path hybrid model, NexusNet. The model integrates a CNN-based pathway for local feature ex-
traction with a Transformer-based pathway for global context modeling, enabling effective fusion
of fine-grained details and semantic information while maintaining model compactness. In the CNN
pathway, we introduce a novel module that combines dynamic weight allocation with a context en-
hancement mechanism to improve discriminative local feature capture. The Transformer pathway
employs a hierarchical structure with linear complexity to efficiently model long-range dependen-
cies. Furthermore, we design an adaptive multi-level feature fusion module that leverages both
channel and spatial attention to guide the integration of multi-scale features from both architectures,
promoting efficient information aggregation. Experimental results on two facial color recognition da-
tasets demonstrate that NexusNet achieves classification accuracies of 88.99% and 79.25%, respec-
tively, and outperforms existing methods across multiple metrics. This validates the model’s strong
performance and generalization ability in joint local-global representation learning and efficient
model design.
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Figure 1. NexusNet network architecture
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Figure 2. ConvFusion module architecture
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Figure 3. VisionBlock module architecture
[#] 3. VisionBlock #3524
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Figure 4. MergeBlock module architecture
[& 4. MergeBlock &R 2244

MergeBlock FHHIRZ O QIHTE T HRFAL G I, WiE 4 o, ERGMEHER T GhostConv.

DOI: 10.12677/csa.2026.161013 159 THEAURF 5 R


https://doi.org/10.12677/csa.2026.161013

T 45

% R IETF & 71(MultiSE Attention) 52 %% []7F & 71 (Spatial Attention) GhostIRMLP LA f Z& 5% 2

RS AL Ol = SRR AT TR RGP B, B2k H CNN 4 3

VIT 7 SCIHRHIE, I GhostConv K AN RIS R RFIE B B8 — 4k B AT WP |, tFE AW T
GhostConv(x) = Concat (PrimaryConv(x) , CheapConv(PrimaryConv(x))) 7

Hordr PrimaryConv 42 /b &8 15 i B 4FE, CheapConv BT IR E AT 7 35 G AR5 A2 K B BRI HFIE, SEILS 5
A B R E RO E 5(a)). BEJEBEAT A BAIIA @A 8 25 S N RRAE 20 b A7 v E = 035, VIT 73
SHFEE L MultiSEAttention 4bFR, Hoyd = AR EA AN

A= G(ConvC/HC (ReLU(Convzc/HC/r (f3X3 (x)+ fous (x))))) 8)

HLEISIN 3 x 3 5 5 x 5 PRAA A RUE IR E 73 B BUOFAT SR IBURAIE, AR T4 Gt 75 20 & SR
I TE T L], KMERE> TSI . CNN 73 SCRFIEIE IS Spatial Attention ALFE,  [FFE R H 22 R
FERT 73 B A B 5 A AT 2 2] S A E N X = ARG 4 SliEER R G B &7 [AE R )
PRI B R e BEAT EIE NS, SCBURHIEE AR #5658, A& )5 AR B GhostIRMLP #EAT 4145
AR SR, HEA N
Ghost/RMLP(x) = Conv, (GELU(Conv2 (BN(Conv1 (x)+ x)))) +Proj(x) )

Ghost/RMLP (LKl 5(b)file 1 815% 2 45449 5 GhostConv LS, AR T A 5358 7 BRI 2%
LRSI B, ERMIRLEPTB R 2 E R R A RHE 5ok B LR A RIRL & 2 R CA A
FJRFFE Xy 1)» FF4G 5 DropPath FEATIENIAL, SEEL 115 200 M R Ok B S H6 EERGE AL 1 - AR BR 10
RBLTHARBL TR S B IE R PR A0 BB AR, RERS R, mROUSEILZ IR, B REZMRHIERL &, JFR
FH AR TS A B T -

Input
v
GhostConv
3x3
+GELU
BatchNorm Gholsiionv
Input l
Pri GhostConv
ggw:vry 1x1 Expand
+GELU +GELU
sy Golny GhostConv
+I1W 1x1 Project
'— Channel Cat /T\‘

! T

a) Ghost Conv b) GhostIRMLP

Figure 5. GhostConv and GhostIPMLP module architectures
[& 5. GhostConv 5 GhostIPMLP #2254

DOI: 10.12677/csa.2026.161013 160 PR 55


https://doi.org/10.12677/csa.2026.161013

T %

3. 2§
3.1. ¥iESE

NE GV NexusNet £ [ 70 FAF 55 1 (I TERE, AW FCAEPIAS B A FERAR SR AT v = 1 it 52
—FaceSc 5 Face3c AT 7S LS. firA Ba e Ll P BRI 5 R S8 BUbRid, 48— B840, 35, 7.

. BRI G FbrdE . AN BERENFEAR AN A E 6 5K 7 fros. £k B, RAS
JERAE T SRR R T 8:1:1 I LRI R o AR . IRAFSE S IAREE, DAARUEEHE 43 A7 i 35 i 1 5 5 06
SE LT S

(1) Face5c ##E4E

ZHAR R T AR R E T S 2 ACREM E . BUERE T A& 6 0 e RS (R 4 Fr e
5000~6000 K, TMOIEHE T 95, MEREL 3600 Ix /245 . FEASRUE GLFE 70K S AL BEAR JL VLT T Fho =

BEfmREREE, WG, ®. F. 3. BRI BE0mh. mEearesk 238 4, ikt
A 223 B, TG EAREA 54 41, HECBREA 18 B, HEHHA 10 61, it 543 BiIE RS

238
223

200 -

150 +

100 +

54
50 4
18

I :
0 - T T T
AN -y = H H

Figure 6. Face5c dataset sample distribution
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(ARAH 48.55%. BB R, XL E B 0w B W oA, M LUR O H R g
BB % . NexusNet (14254 3¢ VisionBlock #EH, FET-Hudkft) Swin V2 2244, SR Gtk 5% B 1) 48
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B2 (AR)HIRF 57 JE(AS), HAE FaceSc FREIL T sz A EVE, SIUPERETa bR T FElE B i, 4]
Pl U 22 B HE AR B S A2 O RS AE 31 R T3

i FRNR, E BB S AT MAGIESE JLFEAE T NexusNet ZEM A 20t . &l ConvFusion fRH 1
B T AESE CNN [ S SC iR RE 77, 3T VisionBlock #EE FEAIE T 46 Transformer %0 5 11 HAK#, JF@
it MergeBlock HHL DU = 283 S0 1 HE LA TR GBS I PR RE 39 Sz AL B . IX A H A3
HIA R N A s E R Bt R i AR AMES, et T — N m A T ST £

Table 1. Comparison of experimental results on the Face3c dataset

= 1. Face3c HiRE LRISLINEERITEL

Network Acc (%) AP (%) AR (%) AS (%) Parameters (M)
VGGl1 80.37 73.89 74.95 88.36 128.78
VGGI13 79.36 74.39 77.69 89.95 134.27
VGG16 82.65 76.25 78.96 88.24 139.58
ResNet34 85.66 81.67 80.63 89.87 21.56
ResNet50 85.78 82.29 79.56 89.90 22.65
DenseNet121 83.26 81.95 80.36 89.25 8.95
ConvNeXt 77.22 73.99 74.19 87.72 87.57
ViT-B/16 81.01 78.78 81.6 90.16 85.80
ViT-B/32 82.41 76.32 77.76 90.35 86.75
Swin V1 82.28 79.41 78.64 90.52 86.45
Swin V2 83.36 80.21 77.95 90.45 87.86
MobileViT 86.08 81.39 78.88 91.42 5.35
HiFuse 86.08 89.62 82.96 91.72 123.26
NexusNet 88.99 87.39 83.31 92.04 73.37

Table 2. Comparison of experimental results on the Face5c dataset

%% 2. Face5c #IE&E L AUSEIR 4L RATLE

Network Acc (%) AP (%) AR (%) AS (%) Parameters (M)
VGGl1 60.48 49.89 49.59 79.48 127.74
VGGI13 62.45 51.49 50.68 80.46 133.17
VGG16 64.69 57.95 52.36 81.25 135.28

ResNet34 73.83 74.06 73.83 91.74 21.34

ResNet50 76.42 74.35 62.09 92.29 23.52
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DenseNet121 77.36 54.06 56.39 92.76 6.96
ConvNeXt 73.58 39.46 35.72 90.89 88.25
ViT-B/16 73.45 42.14 41.93 91.1 84.95
ViT-B/32 72.64 39.55 38.36 90.74 87.46
Swin V1 7547 42.13 42.81 92.05 86.75
Swin V2 76.95 45.28 48.55 91.37 88.26

MobileViT 78.30 44.98 50.39 91.99 6.21
HiFuse 78.26 64.34 59.51 92.72 123.27
NexusNet 79.25 74.55 69.69 92.77 73.37

Image VGG16  ResNet50 DenseNetl01 ConvNeXt ViT-B/32  SwinV2  MobileViT HiFuse NexusNet

Figure 8. Comparison of heatmaps for different model classifications

8. NEIMERLS RN ERTEL

4.2. jHEESELE

N T R UE NexusNet S AR P[5 A A5 B B A% OBk i ——BIAE 48 CNN I R RA 2
5 Transformer [ tFEAKE A @, FRATIAE FaceSc 5 Face3c e b AT 71 i st Vs M 78 . 45 51
w3 5% 4 fros.

SEIGUG T — MY & FERERFIE Al 8 71 (MergeBlock) S HERE Y . FE R 4. KA R Facesc
AR b, RIS T 73.90% I #ER %, (B BRI %2(50.26%) 5 1 171 %.(46.95%) K W], ARIG 531K
R ME L B AR E I R A RE S IR o TTITE Face3c FdlE4E I, HEERKMERE(Ace 77.95%, AP 77.59%) %
FEAF, EE TR R AT a0, R B TR ). LN GhostIRMLP #558U), FaceSc 1)
HEWIR T2 74.25%, KR 5 E FR 553 1.42%5 2.52%, Face3c MIMEMFHIREE 79.19%. XK
IZAEHURI E U Ghost BRG R ZESEH, DIBHRMI S EURA i 1 RHERI AR I RIB R T, IR e 4
FIE ZRAE A BRAR AL T S R pFE Rt . B8 JE I NF) MultiSEAttention 5 Spatial Attention AL ok T 5 B2
(IFRTE. fE FaceSc b, KR M 51.68% KIREETFE 60.59%, IR EDIE K, Face3c I [mIZ M
77.58%42 Tt 2 80.99% . X —ASAKAER], CEE I AL F i S SR AR T O 7 R X, A RO
5 1 ERAE SR st R FON R RRAE . I ST HRRIRR Ty, W R TR R SR
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Z JG CNN 4 3 #k AN ConvFusion fRE™= A [ OCBEME T . XIEIAE FaceSe FHERNERAZ NI K
£ 78.95%, FEMIFETIEM 60.59%EKTH 2 73.65%; 1E Facedc b, HEMIZE M 80.34% 2T 84.49%. X
— R BEESL, @A REEIYE CTRGC B NS E/rEL, ConvFusion A 2%
S K EE R RO, MR FIE5E T CNN BRARI BRSO RE JT, iRk TSGR 48 78 2 4 R AT
F % ORI . BT, Vision Transform 473 51 NS VisionBlock it — AL T4 R @R
SEMES MR . fE Face3c ¥tk b, HUTlRim R, RHER R 84.49% A HETH A 88.99%, SLHL T i
LIERE: fE FaceSc b, MEAUPEREATRIEE LI, WERMIRIEE] 79.25%, FHHIFIRTIE 74.55%. X&
BZAHIE T 2R E DR SRR R E &, R R EFa M FEE, ARREHEE T
BRI 4 J i S B AR S G

TH AL LI TEMT LR 7R, NexusNet sl PR BEVR T~ H & B X PRI 0[] % 1F: - ConvFusion fi#ik T
CNN 2@ AR 5 IR, VisionBlock SE8L T Transformer [/ 304k, X EF 7 715 GhostIRMLP I 4355
1 THFIE LR S AW HOR o T IX L QH iR 2@ 1T MergeBlock A ML A, (1S BIRLAE A% (135 51 2 5
B2, ST REET 52 RE L NEBCFE S PR X AR T AR TR S 480 BAR R B,
SEREJE R T NexusNet W] RGut: . B E R w 7 22 A7 A0 5 15 A 28 T i 1) O B Pk 5K

Table 3. Ablation experiments on the FaceSc dataset

% 3. FaceSc #iR & LilmscIg

Acc (%) AP (%) AR (%) AS (%)
MergeBlock 73.90 50.26 46.95 89.26
+ GhostIRMLP 74.25 51.68 49.47 90.01
+MultiSEAttention and Spatial Attention 75.85 60.59 52.85 90.58
+ ConvFusion 78.95 73.65 69.36 92.69
+ VisionBlock 79.25 74.55 69.69 92.77

Table 4. Ablation experiments on the Face3c dataset

%% 4. Face3c ¥UIESE LiBRtson

Acc (%) AP (%) AR (%) AS (%)
MergeBlock 77.95 77.59 76.86 88.65
+ GhostIRMLP 79.19 79.68 77.58 89.17
+MultiSEAttention and Spatial Attention 80.34 80.25 80.99 90.24
+ ConvFusion 84.49 83.26 82.21 91.05
+ VisionBlock 88.99 87.39 83.31 92.04

5. 4518

AHT IR T B G R 5 4 R AR 3 B Xy SR H NexusNet, 5 7 By [FI g 6 A
28 WX 2 TE K B8 A AR 1 11 JR PR 5 A3 Transformer B H V£ 1ML S 80U S 40 K 19 i 1 145
RGE SN R RAAFE R A LA, R CNN R AR4H 5 SR HURE /1 5 2 T %0 11/ Transformer [ 4 R K AL
BERE AN G . BRI S, HJRH 5 308d ConvFusion B CTRGC EIHFE SimAM & ),
FE5E T 0 22 UL JR) AR AR A FIB E ) A5 (A& BT 5 42 R SCAE B VisionBlock BEHGI N Swin V2 HI4HTL
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ARELIETE ST LA AL B W E S SwiGLU MLP, £ 225 [ e (0 Rl IN DR Fr 16 RE R SO s i
5 e, BT RHIKK MergeBlock LB X7 STRFAEBEAT F & ROINBLRL 7, SEBL 1 A 40755 2 i
RPN ERSE - SE

SR REW], NexusNet 78 FIER I RAESS L IEILH B BE . I RN I AT XU 454 5 =i &
Mg, (ERF OB SHRNFER, REF CIUREIRAERE S, A RERTH 1 SRR A KT
MIZh AR GRS A0 - EIE P FERE LS, 2P R MG M B bR LS SR
SHIZREERE ST NexusNet (3 tH AU AL SERFAERL G 3246 1 — M AL AT R o 5 28, BT
) SEBR A BRIR 2 BR AL S BT TS A A M E RIS S %5 .

E&WE

TR 4G 3 RS E A AT U H (2021ZDZX1032); [T R [ bR K HE I A i A 438 I
(2020A1313030021); & K2=FHITH (2018GR003).
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