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Abstract

With the rapid development of interactive applications such as XR and AR, 3D reconstruction has
demonstrated significant value in the field of computer vision. However, motion blur, which is

SCES|H: KRS, MOLE, B E TGS Transformer [f) LR = 4k B LB IR THEHURNE SR,
2026, 16(1): 198-204. DOI: 10.12677/csa.2026.161016


https://www.hanspub.org/journal/csa
https://doi.org/10.12677/csa.2026.161016
https://doi.org/10.12677/csa.2026.161016
https://www.hanspub.org/

KRS %

prevalent in practice, weakens texture and structural information, significantly reducing the geo-
metric consistency and detail integrity of 3D reconstruction. To address this, this paper proposes a
structure-guided Transformer deblurring network for 3D reconstruction tasks. This method intro-
duces an explicit structural prior and enhances the Transformer’s edge recognition ability in blurred
regions through a structure-guided feedforward network; simultaneously, it uses a multi-head con-
volutional self-attention module to reduce the computational complexity of traditional self-atten-
tion and strengthen local spatial modeling capabilities. To verify the effectiveness of structural re-
covery for 3D geometric inference, the deblurring results are evaluated using a single-view recon-
struction framework based on 3D Gaussian Splatting. Experimental results show that the proposed
method achieves superior performance on multiple metrics.
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Figure 1. Structure-guided transformer deblurring network model architecture
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Table 1. Comparison of experimental metrics on the Google Scan dataset

F 1. AARIEBIEE TSERiEtRxI L

Method PSNR SSIM LPIPS
I + SI 15.51 0.81 0.205
Restormer + SI 17.46 0.84 0.156

Restormer + OpenLRM 16.42 0.79 0.278
Ours + SI 18.04 0.85 0.147
GT %I\ +SI 20.62 0.93 0.122

K 2 R T = AE i BURAEH LA TE QA R BRI TR e e R, RN R AE A B AR

DOI: 10.12677/csa.2026.161016 202 HEHUR 5 R


https://doi.org/10.12677/csa.2026.161016

KRS %

HIEOL T, Restormer 221 f5 i OpenLRM 5 SI #7753 DA 52 B E WK FIAn i 540, A i R
HSCEE . R X IR AR AN [ FE B R Bim A% . AL T, AN S5 VR REA% B g i At b F Gl e 1
HERSl. FEEEEEANTT, R 7EEE /NS 28T 10 X St R B S AR 4 4 — 2k

Input OpenLRM SI Ours Target GT
A\ WXL

Figure 2. Google Scans dataset: A new perspective on generating image comparisons
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Table 2. Comparison of ablation experiment metrics on the Google Scan dataset

2. AARIIHBIEE TIHR SRR EL

Method PSNR SSIM LPIPS

Ours w/o SGFN, L_grad + SI 17.46 0.84 0.156
Ours w/o SGFN + SI 17.71 0.84 0.153
Ours w/o L_grad + SI 17.89 0.85 0.149
Our s+ SI 18.04 0.85 0.147
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