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Abstract

Underwater object detection plays a crucial role in marine resource development and ecological en-
vironment monitoring. However, the low contrast, color distortion, and complex background inter-
ference of underwater images pose significant challenges to accurate detection. To overcome the lim-
itations of traditional methods in feature extraction and small object recognition, this paper proposes
a novel detection model with deep integration of Swin Transformer and YOLO11 architectures (re-
ferred to as YOLO11-Swin). This model adopts Swin Transformer as the backbone feature extraction
network. Leveraging its hierarchical design and sliding window self-attention mechanism, it effec-
tively captures the global contextual dependencies of images and enhances the representation capa-
bility for blurred and occluded objects. In the feature fusion stage, a Cross-layer Feature Aggregation
(CFA) mechanism is designed. Through global pooling and adaptive weight calculation, it guides effi-
cient information interaction among feature maps of different scales, thereby addressing the issues
of semantic gaps and scale mismatches in the feature pyramid. Additionally, Convolutional Block At-
tention Module (CBAM) is embedded at the output end of feature maps at all levels. Via serial channel
and spatial attention sub-modules, it adaptively optimizes feature responses, highlights object re-
gions, and suppresses background noise. To tackle the problem of imbalanced positive and negative
samples in underwater datasets, the model employs Focal Loss as the classification loss function. This
focuses on the training of hard samples, improving the model’s convergence speed and robustness.
Experimental results on the URPC dataset demonstrate that the mAP@50 of YOLO11-Swin reaches
75.54%, which is a significant increase of 9.42% compared to the baseline YOLO11 model. Specifically,
the Average Precision (AP) for small objects (e.g., scallops) is improved by 10.16%, and the Recall is
increased by 4.55%. These results fully verify the effectiveness and advancement of the proposed
model in complex underwater environments.
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NFBEX 3, ASCHIN Swin Transformer IR T 11 B Z AIHLHI[4]. ZHLHRE BES iHHE
PR T AE B S RS O, PR A A0 2 & DO A A E ST IS & I RHEAC B, RECR TR T M S R,
NHE5E AR RN S AR SRR R ). BRI S, Swin Transformer 75/ H A1 £x 8038 @ AN
SR S XIS (R A7 TR I AR 3, AT R AME e B AR AR E 4 R A B A . BEAE,
Swin Transformer [ 5 3 UZ S EEH B AR HE = FROA [ R oRFEZE (8% 16 32)[RHEE], 43 % BT
ANEARBIANT AR A E BRI R B AR DL OK H AR IR BRI, TR KT HARRIITE 2 RBE R B
ZRALT R[S TR, ASCE R A E YOLOL1 HEZErh, 42 YOLO11-Swin /K N H brié il
Bk,

YOLO11 fENHp Bl 28, SRA C3K2 BB A YOLOVS 1) C2f AE, i 3§ hnis B BURFEAE B
AR, AT AR EE PR RAR R R, JCHR TR B KR /AN H AR Z AR AR AR Sk Bt
B RERVAESE DB, ARER TEK T RT, 2RESHFREHFSERNEXER, FAES
G E DLBOBIIL Z 7 JE [6]; [FIRT YOLO11 fRAk 1 HFAIE 4 55 AT 18 43 e S s, 3a e 2h 7 Y AN [A) R
FERFAEIEIE S L, 1A TR EZ A HERPBER M, X 50K R B AR R S B R 4 A s A . AR,
YOLO11 J5f M 45475K F] CSPDarknet 2244, KA R 1 J5 S RIE SR BUE 3, TEIE T 4 ) i A
REIM PR, HA% St FPN +PAN Rl& B42 [ 4G, UM BARRHETERS REMLid T 5 . TEK MR L
JE. SRS RR, ANAELE/N BARIRAS . RO E bR 8 O I 25 5 AR, TG IR A THD AR U KT RS PR A% A R A
[7]

P RHIERL G SR ISR R, 7K PRl v Rese FHBE it 7 OGBS 4. CMNet £2 H I AH 4R
FHIES R(ALFG)Hilg, 18I &) 218 UE B 5 HAUZFHIE 2], AR08 T ZESREE RIS, JUH
Sh/N HARKE 48 25 2 2% ;. SWD-YOLO #id #) 54 4 (DynamicConv) B & £ B o b e 50, 454
/NI (WaveletPool) AR TUAY, SEEL 1AL BAL 5 REFE I FIFETE, K R R IRAZ BRI 5L fit 17 1%
THEEK . FERINLEIE, CBAM (BRI )il i 818 - 25 (8 05 S0 ) BE R Ak H bR X
B, HOEEEE N R SR EER K 7 < 7 B, CHRESREEA 0T iEK T 240 5 LSKA
(KBYA] 73 B RZE R )8 A R BB AR T S RUAS, i BT R A BT 3R A T A% o i R i
[8]o #RT, A ESERG 7L R R THAES B(W CMNet), 4 J&iERLHESS; HEINLHITEK T 5
HH SR AT e Z B PR T, DA S A ) R A A R[]

B XTI BELE K AN A AR AR CNIN BERY (1 = 3 A5 JR) PR %5 2 b () B AR [ 4 3 3= LA )
W EE AR, ASCIR Y YOLO11-Swin 7K T HARK IS0, i 7 DAF ook

1. A SCHEHEIK T ARSI Y% YOLO11-Swin, B ¥CK;: Swin Transformer # 4t YOLO11 JRUHEF!
FF(CSPDarknet), FIHHE 2k BIER IS & 72 RERH@x. 16x. 32x FKAHf), BEHY
ST K BRI S AKX LGB H AR X B AT S AR AR R ), AR R B BT 57 IR 1) R

2. {E Swin Transformer i H ) = U RFAE JZ 1N 88 T8 - 25 [R]0CER 4 7 79 A, Jd ik 3 18 AL 1Y) softmax
TR — S S R E A, BIE N R B AR XL, 5l SR RN R T HAR AR S, S 5
TP, JUHARTHIN HFR-5 50 HERS H AR A AR e 1

3. #TH% YOLO11 f£Guiiidt e s m A iz, Wil milih 5 BIENRES| S HEE AL B4, @
A5 ) SR AR 2 RS RHEAE, SEIURZ 07T 5 @ 208 R TR, A RNRK T B bR R
JEI A A, 5 3 A5 1)

4. 7 ToU [BIA453 5k 2tk =51\ Focal Loss, @i shZIIAMLEIF0H] 5 70 FPEARAE . Sl MERE AR 2
2, fRVK R SR E SRS P4 K/ B bR e ALREFEAS 2 1), BT I ZRAe i P S ISR .

DOI: 10.12677/csa.2026.161031 376 LR 5 R


https://doi.org/10.12677/csa.2026.161031

KR %

2. YOLO11-Swin E3%&it

2.1. BFZEH

YOLO11-Swin 2% 5544 3 B =73 2. 32T I 4 (Backbone) . 238 X 4% (Neck) A1 A i Sk (Head) »
M, Swin Transformer 734 H =/ NREE(8x . 16x. 32)FFHER, HbiBIEE - TR NEFE S
5 1t (Channel-Spatial Attention Module)JE AT HFAEIE 58, Bl J5 51 N5 2 RF1E fl & L (Cross-scale Feature
Aggregation, CFA)SEILZ RIZE(GE BRlE . MG 51 = REFHER 2 5% A 2 YOLO11 figfhfaill sk, LAFF
177 BRI 4y R 5 R AAE 55l B E A S LRI AL, Bridert 28 RERS A7 RSO0 K R BUER HR AR ZE )
FRXTEERE . B AR S 1S S AR IR S OB ) . X 28 AR LS R an P4 1 P o
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Figure 1. YOLO11-Swin modeling framework
[ 1. YOLO11-Swin & BI{E5E

T/ 4% (Backbone) 43K Ffl Swin Transformer #4X, YOLO11 JR#51) CSPDarknet 5454, Wi 7E
FHEFEIE R EAAE R 3 72 7 . CSPDarknet i B4 AR R A 1) JR 0 52 B SRS B B 4015, A& —EW
KT BbRJRSCRR AR ), (BT 2R TERZ RN, HESZ B UG o BUE 4 R, 3 S5 A7 i
“HirHmm s A BN EFRZ B AR B AOBUC RITTTHAFEA 2. MBLZ T, Swin Trans-
former SIABALE O EEZ NS, KERE U ERGIEIFEESKRME DA, AR8dEh] ViR R E
(5EMER S 2R R), FIRNED AR & O B RS R S, S E DS B2 &LHIAMY
TREE 7RI AR RE 7y, 0 B AR I A s SCEERERE 77, WM& H T2 0K S 1) B FRkE
fIE15 . Swin Transformer £ Stage2 % Stage4 73l N RAERTHCN 8. 16xF1 32x 1) 2 REEARFEE], 7]
A RO RZKR B ARSI A /N H PR (8%) - HAE B ARFRER(16%) - K BARE XS B (32%)” MZ)JZIRH
Ko FESHB M 2% (Neck) BeitHr,  5INEE REEAFAERLS AL H(Cross-scale Feature Aggregation, CFA), Rlift
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48 FPN 5 PAN AR FH it URFIE A & 8 42, CFA 1 20l 4 Rt Ak BRI JUBE RS I 1 4 R 1 St
ARFF, B5 15 B2 2 I FIHL(MLP) A B & N R A A, ST T A A REERHE e SRR, SEIURZ 40
TG R E R AN . Rk (Head)#B 7>, ASCH A YOLOL1 MIEARELNI L it KrRns
B> SCE R oy, SRTHERME B 2R 5t N I HIRIRE T S e S L . RIS, $ 2k BRI Focal Loss
Y5 EloU Loss FIBREIACHNS, A RGME T /KT FARAS I - ik 7 76 1) TE SRR A B9 2R 47 1m L e A,
R HHIK R BG4 T3, /£ Swin Transformer /] Stage 2 % Stage 4 H iz NIEiE -
AR A, H 5 H AR XK R RS S, Wl 1 iR R,

2.2. KERRET

2.2.1. BiE - TENEFEHER
NeR Swin Transformer ET PN 2 REESFIEIRAERE ST, AT T —FhEt&iEE - 25 A5
EF R IR R B G 2 FiR).

F l
A
@G

( 1x1 Conv )

Figure 2. Channel-spatial dual attention block
E 2. BiE - TEMNEEE RN

ZAEELLL Swin Transformer % H 2 RUBERHIER X e R (H. W ONFHER & 9E, C A@IEE) N
BN, oy NEEVER IS FIEVER SO RERER G =E 0y, WIEE S SR XAk -
JEARYFE - Sa I — 47 SN, R OB R, R H AR RRIE P AR IR TE (W DU A0
) 0 LA R (A B R A TE) [10]. B X NIRRT HAT B S R KA S T
b, FRECRE [ BRIETE 43 )R 2 AT GETHRAE, AT

F,,, = AdaptiveAvgPool2d (X ), F,, = AdaptiveMaxPool2d (X) e

FH,  AdaptiveAvgPool2d 5 AdaptiveMaxPool2d 738 H & NP3 5 B & N i Kt Ab#/E, n T
BT IRINRE 480 1< 1< C 465, #itRA ReiftimiE 2R E B[ 11]. FE/mE 1 <1 R 5 REE
YEFER Ay &, J/b oh R A FE I [R] N A a 3E (R ORI, A =N

Frpmy = ReLU (W, (Fypy + Fony ) )» Fg = WaF oy )

comp gap gmp

Kb, W eR, W, e RN 1 x 1 BRESH, Sl BiE S0k %8 2 R4 1 1/4 DRGSR A, 22 Re LU
Pom R AR LN S, HY R EIER C, A7 RSB IE A ) R R MRBOR AR [12]. FeJa KM softmax
BRAGHT R4 IR — M, A RRIEE E IBE Ar, e R, AR5 sigmoid JH—4k, softmax 384+ HEAL
il e B i 2 X R S AR Oc i ilIE, AT

Att, = softmax (F ) 3)

exp

DOI: 10.12677/csa.2026.161031 378 THEAURF 5 R


https://doi.org/10.12677/csa.2026.161031

KR %

1
+e "
DHSER 76 2 BRI AL ERRERAS 55 B sigmoid 2K SSEIHHIR T s R REIURLE, Tk
K S SR (AR V0 ) 15 AN (AR B IR e S
1] softmax B 50 soft max (x, ) :Ze— SCHLA R, BB 2 A 1, Rl

e’

SR 52 T 06 9% P 5 A R T 1 WA, o 9117 K T PSR 25 AR/ 45 R o7 2
softmax 245 AL B TH S 0.2~03 (75 T PRI & % ), TR SR 7 S0 0 LA FE U 0,01 L

T, B REIEIE I TTHR, sigmoid PREUKIAR LR RN EIRIE 0 IR, PR AEZE 57t (Y BEURR FE LA
22 AN IE R AR IR N 22 5B, sigmoid fit FIRE Z it D4, SEOCBIBIE RS . 1
softmax JE 1 T 40 pR BUBCRRHE R N 22 57, 45 OSBRI AR AL ma 2 LE AR G iy 1, 28 8us a2
FEYPRE ! ~2.7181%, HildeRH M, REEERRERS PN,

AANER N5 SCE CRHIERSE - RSO - BV AR, HISS TR ARECTIN. RAL F AR
22 18] DI JR2[ 1310 15 56 1 I8 4E FE i NRFIE AT T Bt AL 5 di o Kt Al R B 2 () 4R FE ) 2 RUEE A5 B
IR GBI R/ WA R

FEEEA B TE AR SN MG 2210, 1] X 8], #@EAE BT,

Sigmoid pR#HEL o (x) = 1

F,, = AvgPool2d (X,1),F;

avg max

Rt G R EIE A L %, A3 H x W ox 2 BIEARHIE, -T2 2 =mE 25 skt m
RS AE R, AT

=MaxPool2d (X,1) 4)

F =C0ncat([FS F :l) (5)

cat avg ® " max

ERCKT HAREIA IR, SRHT 7 x 7 Rl 4 23 6] J&y &L R SO, R sigmoid R A4 %
FIVER IE A, e R, FBEBESS 20,1708, X H AR X 7 = A E 3 5 X PR E, AKX
N:

F = Conv2d(F

G = SIS 2 AF Swin Transformer £ THRFMIERI /A0, HRECR R Bk 2 A RS, ¥
B RRIE S R AR E R MR N, BE4ERF A R AERR e M, XORSHESRAL H AR SRS 4n -y, i Al s
g JRUBHSAE S B TRFEIALE LN 0.9:0.1, LUOPATRFAEAa E ME S5 igss. AR R

X, =0.9X +0.1x( d1t, ® (Att, ® X)) (7)

Hrh, QFRIZBETLERE, 0.9 NEEEHEAE, 0.1 A /MR iEA E . el R, i%ah & 5k Ge
HREEF KT /NERE D) AP 1.18%,  [FIR @ G A L& 2 1 S 4 IR 14]

2.2.2. BERMEHLEI(CFA)

x4t YOLO RAIMKHGY FPN + PAN Z5MITERFIEAL IS IR 1210 2 o 15 REAS B8 TR I AN R 45 1)
B, AV T RS R AL, DL SR E AL . A EL T FPN, CFA 7645 B A8 A B S45AE
WIS TEANGERE ESzal 7 Rk, 1648 FPN dlid “ w5 BHHE F KA - SAAMCEREBHE: - &
R i (R & 2, SR REE ERE M BIm L. ERIK THEEH, %7 A5k
/NERRAZRER . RERIZIA 5R (015 84505 BhAN, FPN Xt 4% REEARIE A E A L 2, IR
RS, MELUERN K R B AR A S AR RREE, B a0y B AR 24 X I st Fe R St X, 5

kernerl _size =71, padding =3), Att, = sigmoid (F,y,; ) (6)
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BL R BEFRE SOURIE R/ FARGTT” B0 W RARPCT P HARRRAE” S5 W[ 15] (G lE 3 Brs).

| CFA |
d,
d, &
MIIE-. CONV
d,
d, &
GMEIIE—.

= MLP

CONV
X, X x¥, —— coy
| L —— XXV, ——
CONV
X, H,xW,xd, / XZX\PZ — —
l
CONV

Figure 3. CFA module diagram
3. CFA tR1R[E

FGME IRBR ], CFA SR 4 JR s - shaS il - EE:RTE "I @A SRS . 155, X Swin Transformer
=R EERFIERI(8x . 16%. 32%, XJM Stage2 & Staged)ih4T 1x 1 H, 45— WG LEE E 256, LU
T BRIEIE A — B R I 2 LS, S R YR 2 RS R R EALE A [ 16]. BEE, HATHAT AR T
1k(Global Average Pooling, GAP) 5 4= Jij £t K it 4k (Global Max Pooling, GMP): J:rf GAP $REUH i 4
FRGIHE R, 5 H BRI EARIE RIE; GMP SR 2 (A1 4ERE R Mg, REAGaMT. =&
gity, HAERKTFERMN “2RE 2] R8T MEZ R REHEFR R, &, ¥ GAP 5 GMP 13
NIRRT 1% 1< 256) IR TGN 2 2B AL, DAAR A B & Sl S B o 2 T AR 4y
NE G BRI RES RS X LK, Zhas VPl & RBERFER EZ M, A T B R 46 = Ry
FIE PRI S 5 8 o G IX Oy 2, AT SEILTG R R AR 3 AR 2 47T 5 R SR SRR R B BN 17]. X
BN B () /N B ARG o) 5 5 RE(32x) 2 J/iE U B @ L B, ARk %
B B A i i AR v (15 SAFE, R/ B brks il Re .

MRHEALE S B R, &40 FPN A [\ RUBERRAE R 43 e [ 5 (DOE I 3 < 3 BAUZ IR0 %), .
IERCK T B AR I AR o 1 WTETS HOK T EREE R, AN H RIS, 8> RUBEARFIE R o B8 = A
MAEVEM IR, K HAREC B AR 32x REERIE UE B, [HE N E 2 FBUFBE R A L. CFA 13)
AMACE TN 4 R R AR5 MLP 45 &, SCOUBUE IR R R E G ROR A, HAOAE T8 & REERFIE
(14 )55 E(GAP 5 GMP)IE AU A= B, AR . BAm S, YMARGHEHRSE
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SORFEZE/ANT 10 (AT LEEE 5O, MLP 4R T+ 32x REERHIERIBUE o, (GEFIEN 0.1~0.2), MH&EZR
B SUE B H bR L = BRI HARECR (5 EUE I 60% 0, 8x REERHIERIMLE o, 2 BE 52T, 581
AL R TTIR . XA SN A BN 5K IR 2R R, T FPN A [ E A i JevE Sl
FIERL, /£ URPC MR ks, CFA Xh3 DL ARSI AP 421 6.35%, # P IRIEHI K N =28
W R ERCRE S 5 E[18]

2.3. 55k oR Hesist

BEXT KR B AR I o 5 ik A7 7 1R IE SRR AR BEANT- A /)y B A s A R M DA B 3 A [ VA BB A B A
SRR, A XAEE S IOU RANENEI K R B3 b, 5INEE s S i 2 (Focal Loss), 4/l & 3145k
PR % (Focal Loss + EloU Loss), VARG HEFHERL 8 A7k S5 Il 282 2 % . TOU (Intersection over Union)4fi
ek AoE I ) LA S X E TN AE 5 B SERE  [A) () 22 5, RES BONMERR I Z il e AR 22 . SR, 2RI
GAIHEE B A, 10U 0K 5 52 BE AREARASPAT B 520, 0 HOHEC o 5 FROMIAE 456 52 5
WoARUR, FERASEEATRE. Ak, 10U Muh 875 P 5N TOINHE L5 60 B L SEAE (1) 538 I X, 7R
AERKB TR R, HYIEH BN & E S K E S TIE R ARt — PRI 2R S, FFRIK
RS ST S5

NG LR B, ASCHNEE SRR R E(Focal Loss) LS SR AR T 0 343 S AR )27 2 BE J1 . 1ZdR ok
PR Jeilid Sigmoid BRECKASA S H F R MRS, AR L SRS R 23 TE PR AS S5 TSR0 B R
B8 51N I R, i R RO S 30 2 o AR BB R DTRR, RIS RO M 43 AR A R S AS
Fo UEAN, LR AREARE, A RUESE R TR R R AR, AR TSR AR .
2, RIOHAE AR EloU IR BT ARG, MG — I HARK I 2R ek 3, 7270 K 5 A 5%
SR R o ZR AR T T B /N B AR AL SN E H bR &R, BER K TR R
Eitm T RAARMYERE .

4 Focal Loss £{ 4 0.3, EloU Loss A E 4 0.7 I, A mAP@50 % =1(75.54%), AR F:

Lo =03L,. +0.7L,,, @®)

‘total Focal

Herh, L, WEGHH 10U B, HILLAESE oU 31k, 5B nSHEMIRILE R, ARY:
p0b) P () P ()

() () ) ()

ek, b A b SRR FHE RS IAER b Asb, why W', b BN BURERI L SAE R T, ().

() A FRMAE R 2LSHE R NMERE TR RO B8, p DI RSB <
Ly WEEABUR, AN

Focal

Ly, =1-10U + (€)]

Lra = =20 (1= ) Tog(2)) +(1-3,) 27 Tog(1- ) (10)
Horb, y NREARPRZE(1 FORIEREAR, 0 RORTEER), p, WK IEREARER, y NERR T, &%
WisE y =2 AR R fE.
ZWTTRECR B TOU X JUART i 22 1) e Udk v, SOt 43 8 M B2 sh 2 AU L | 38 s Al e /o, A R ik
FEARMB S SR T JOHAELC I/ B bR sl ORI SN, A SR kAN 1 10U BEEERM BRI B IE, 2
FERTHNGRLENE . WCSRCR ATNNE B, A/K T B35 Bhrk gt 7 & rmtiab 77 % .
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3. IRGERERR
3.1. XWFEH

SEIG HIHRE RSG5 2 Windows 11 AR, ALHESSE AMD Ryzen 9 5950X (16 cores), 1847 P72 264
GB, GPU ##JE RTX 3090, R4 SE7E PyTorch 1.7.1 ¥RE 22> HESL, Cuda 11.0 288, 1 Python fit A /2
3.9, IZS % batchsize BB N 4, epoch BLE N 100, WL THN 0.01, WAFIFEAN0.01, WAE
BIIK/N BB 4E T 640 x640, AMEFHTIIZAEE, HMSECHERIME.

3.2. SLIREHESR

AR URPC 7K B kil S A Es AR AT AN 2R 5 000 . 28R AR AL F 5543 TR ICSK T
G, 52 (holothurian). #H(echinus). /5§ Wl (scallop). #F 5 (starfish) 4 2R TG EEEY) H AR,
JLhRvER I 5000 NS BT KT AR OGRREE IR (R R T MRS So ), 0 AR b IR MB O il A ARG
YTECRE . skt ity SORBMISF RIS, WA . o RpELIe ™, BRaE4% 8:1:1 b
BRI RINGEE . BUEE S IREE, BB R RO A EVPASZ (e RE . B EIRIB A, ABFAT
WX VAR Y o SR me . I BENL ECE R CRE . XL BE L RN PR LA R KGR %, 456
e T ROR 5 e 7 s 47 SR R O RO, BRI B R I B . SRR I i R I 2R
Ao, AR B K TGN RE FT, A G S AT 55 81w Hdl 2R A

3.3. Hfrigtr
R SHE . HE R K E . A% R mean Average Precision(mAP@50)/F AR 13- Fe b5« Forpr,
mAP@S50 HIKSBE P A1 AR R HH5AF

FiREP N
TP
= 11
P=rpiFp (1
HEZ R A:
o TP (12)
TP+FN
1
mAP@50 ;AP = [dR
0
l N
mAP@50=NZAP,. (13)
i=1

Hodr 7P A AIWT IR FIBHMEREARSL, FP ONESA I B FIFEAREL, FN NBRIRIIFEAS, AP NHFEE P A1
R A T A r B2 TH AR ; mAP AFTE AP KIFME, mAP@S0 H ) i F/m4ai2E. 24 mAP@S0 &
i, X R E AR I SRS AT
3.4. jHERECIE

NEGIE YOLOT 1-Swin B3E A S A% OB KR B AR il PERE I $E FHE H , A SCHETF URPC £di 46,
PL “YOLO11-Swin TR + FyEtdiom” {Eodku, &t RVVWERSLL, %455 NiliE - 456 XE
EAEEL BRSPS A T . SRR AE IR R, B AR BE T R AR K TR RGN R ) % B
B, HAAERENDFERS.
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AR FH B 3G s S mg B, i R B s UK IR IR AR AL, R85 6 v SRR 2 M 7 8 DA 4008
FiUR, BAYH) mAP@S0 &7+ 1 1.44%, HRIZSEF T 5.59%, Wik £ )= R 38 K M5 E
BEPER SRR o SIS - 25 (B X R R LS, mAP@S0 12T T 0.81%, /NEFrE UL AP
PTET 1.18%, R ZATHOE @18 58 4 0 — 10 5 25 (A R 3 MR, A 80 s A4, saqe 7/
H ARSI R IR [3]

BN ERAYLHE, mAP@SO FETt 1.57%, HH U AP KIEfEH 6.35%, FWHIER] T CFA @
WA FRA RIS HE R E S S, KL S FPN + PAN HIRIPERI& 842, WS 1T /K T BIRRE
IRHC I R f A A AR R B EUS , mAP@S0 IEF 75.54% (FIEHESE T 4.52%), A [FIZFIET 3.96%,
{5 HLE HARHE S0 AP 7] 4.96%, 2B Focal Loss X #E70 8FEA A4S E 554k DL & EloU Loss ¥ %€ fif 1%
ZEWIREAHRE &, AR T KR s b I O AR AR FEAS P41 S /)y B b 58 AR FEAS J2 11 1) o

SESRE, SBHIE D AR SR E LG (A 94.34 M I 100.81 M)IFTRTHE T, SEBL T
Tor K BE 5 S B M B4R T, AR /N BAR SRR LE BE B AR I R BRI, AR RE T
P S B R R 8 o 3 40 S SR R BOE v A sl e 1 AT 4 BT .

Table 1. Ablation experiment
= 1. HRSIE

YOLOI11-swin

B o l V J J
R I l J J
R N N
TR R B ik J
Parameters/M 94.34 94.34 98.56 100.81 100.81
mAP@50/% 69.58 71.02 71.83 73.40 75.54
P/% 86.79 81.66 81.39 82.51 81.89
R/% 52.46 58.05 58.95 58.64 62.60

Figure 4. Example of YOLO-Swin detection visualization
4. YOLO-Swin #&3 AT #8447 £51

3.5. {ELAXTELSEIE
AT IE B AT ) SE I 45 FENVEAN, FRATTX TR B (mAP@S0), ¥R A Bl R — R FIVEM Fe bt 47
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KR %

T VAR H e .

XEFFIRE R, I NEIE - RN EER DB, mAP@SO0 $27H % 71.83%, &7} 0.81%, 1%4H
Bl i v Ak B AR A S TE 5 2 ) XA L, A A K R 24P, /N BAR(E J1) AP M 63.44%F2 T+
2 64.62%; B LEREZMENEE, mAP@S0 2 73.40%, FHIRTF 1.57%, KRS R E K1
B, HoA g U AP K22 RPERFER RS B R TR 70.97%, #EIE(E X L H k) AP M 85.38%3 Tt
% 87.99%[1][3]: A SINE AR KEESG, mAP@S0 L F 75.54%, BFEuE BRil4RTF 4.52%, Hiik
BRI HO0S M 23 FERE A IR BE Al 5 0 LR ZE A A P B, fIXT B BE HAR (B Z) AP M 54.76% 387+ &
56.46%, W2 GCEEW HER) AP M 80.52%R T+ 2 83.99% [2] [5] 5 A A ENEL, YOLO11-Swin
) mAP@50 %% 1T Faster R-CNN (39.12%). CenterNet (55.90%)ALGit M, 5[ &5 YOLO11
(66.12%) 2T+ 9.42%. 5 YOLOVS (72.56%) 42T+ 2.98%, JCHAE/NHFRAI ERMIREH, B I AP Bkt
HEPRTF 10.16%, A I0IE T IZEIVETER 20K R IREE O A R 288 H AR i = ks BE R RE ), SE0 45 R
2 s

Table 2. Comparison of average accuracy of four types of underwater targets before and after improvement

2. BUHRIREIAK T BRI FIREE I EE

YOLOI11-swin

Ko o v V V V
ERE ML v V V
5 il (CFA) v v
EaE NS etid V
echinus (AP/%) 85.87 85.38 86.41 87.99 88.13
holothurian (AP/%) 54.74 54.76 55.06 51.50 56.46
scallop (AP/%) 58.57 63.44 64.62 70.97 73.60
starfish (AP/%) 79.14 80.52 81.21 83.14 83.99
Table 3. Comparison of accuracy of four types of underwater targets before and after improvement
7= 3. BUARIR AR T BARaURE Xt
YOLOI11-swin
Hepp g N J J J
TER I v v v
5= & (CFA) J J
PN etid v
echinus (P/%) 90.04 86.73 86.34 87.24 86.59
holothurian (P/%) 82.89 77.02 76.37 75.72 76.07
scallop (P/%) 87.88 81.29 80.91 81.62 80.83
starfish (P/%) 86.36 81.58 81.94 85.45 84.05
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KR %

XFPFAEE P, 5l NI - 23 (B = S, #AH (echinus)# FE P 0.39% (M 86.73% % 86.34%),
¥ 22 (starfish) K5 FEH2 T 0.36% (M 81.58% % 81.94%), FEAANEE /M4 % 81.39%, FHEZ HIHLHI7ER
0 H FRFFAE R RIS, AT R 23 i BAS FERE A 00 R0 00 BB = AR O . 2 NEs RS LS, R B
SERTE 3.51% (& 85.45%), HEIHASE[ETF 0.90% (£ 87.24%), BEAKKEFEIRTEE 82.51%, WiE T2 R
JERFAERE B HARREAE 56 58 1 (0 3G 54 F 5 fe 28 50 N0 bR Bt J , g HEORS B2 0 % 0.65% (22 86.59%)
2 (holothurian) kg & Tt 0.35% (& 76.07%), MEAKE N 1% 2 81.89%, (HME /> AR A 1R 7 e M 5ol
EIRTt. LA KE, SHYONIE RS EIE W H AR R B OB R (R IHET 2.47%), XS5
fEXS o BE bR BOAS FE S M AsE /N, AR I T SO SRS FERG T2 5 A 0] 2 2 (R I BN AP [19]. SEER 45 R dnsk 3
BN o

YT HEZER, 5INEE - FANERIBERE, BARE FERET 0.90%% 58.95%, i U (scallop)H [F]
RHETE 0.83%, RIAFERIHUHIIGE 70N BRI S EaaiimlE, B E R0 0.31%,
B3 2 (starfish) A A AR RRRRUE s A ATUR BG5BT R R B & 42T 3.96% % 62.60%, & I
AR KIESR T 11.83%, #EZ(holothurian) 4 [ ZR 52T 5.82%, JailE 1 153 K LA X E 73 FEFEA H [H16E /7 1)
SRAIERT . SEIRSE R 4 FioR.

Table 4. Comparison of recall rates for four types of underwater targets before and after improvement

= 4. BARIRIUK T BRI B B R EE

YOLO11-swin

B3 e J J J J
Ey=waliINiil v v J
¥ 2 fi4 (CFA) v v
i 2K iR s v
echinus (R/%) 72.36 76.67 77.23 79.02 80.23
holothurian (R/%) 36.87 37.01 39.55 31.19 37.01
scallop (R/%) 34.84 46.58 47.41 52.96 59.24
starfish (R/%) 65.75 71.93 71.71 71.38 73.92

AR O H SR80 2 B, YOLO11-Swin 7E7K T B s TS R M E L. 5 CenterNet (mAP@50 =
55.9%)~ Faster R-CNN (39.12%)55 & M RUAHLL, FREE5E mAP@S0 £ 75.54%, 70 nl4EFt 19.64%4H
36.42%, HAFIH(62.60%) 53 i@ T FIRE R, B030E T IR FE 2 2] 7 ik /K N = 343 SeiE Mtk s 5 1R R 50
B AR BIAR L, B8 YOLOVI T (66.12%) 42T 9.42%, #; YOLOVS (72.56%)32 T+ 2.98%, 7£Z%&(100.81
M)JE BESEINE LT, SEI TAS S BRI P . X —45 39525 T Swin Transformer [)42 5 i AR g
SR AU K MEXTECEE . 2 R HARME A, 5 T S SERR K R AR I 37 5 A R
h# . ZHEIMFELIET Swin Transformer 23k HIER JIHUE], (HIH AR EABLRE J7 77 R 10K B3 T
(+9.42% mAP@S50) & E AL T THE AN, F56 24K T 3500 kil S p v 1 75 3K [20]. 0 HEsei 25 S an
5 FR, ARUABEHLER T Wik, JBos TARREZESE R, U T YOLO11-Swin 7EM# A I 77
HF I RE D, Wl A& 5 fos.
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Table 5. Comparison of different algorithms
5. NEEERIXTEE SRS

CerS e mAP@50/% P/% R/% Parameters/M
centernet 55.9 96.11 17.6 32.67
Faster R-CNN 39.12 35.84 45.13 136.76
yolov8 72.56 88.79 47.03 11.14
yolovl1 66.12 88.76 45.56 9.46
Ours 75.54 81.89 62.60 100.81

centernet

Faster R-
CNN

yolov8

Ours

Figure S. Visualization detection results of different algorithms

5. FRIEER AT KENEER

4. &5t

ASCHEH ) YOLO11-Swin 3%, fli4 Swin Transformer {4 R AR GE 77 818 - 25 W XUE I E AL
il 5 2R b A SR DL R R B0 R BB AL, A R AR T KT BRI A AEAE ) R RS2 B 52 PR
FROERLE BEAR NI 15 S5 BT 0™ 5 L IE SRR AR 70 A A BE AT 7 45 QB i) L, 53 25 SR W, YOLO11-
Swin £ URPC $(#E 4 FHUS 7 R E MR T, mAP@S0 &%) 75.54%, ARG YOLO11 71 9.42%.
Fodr, ANEFRZETNANEE TOFT AP $25 10.16%, AR E 4.55%; KX HR(iE2)H AP &7t
4.96%, AW T IZEIRIERFOK TP S SERME, JSERRK TR T 20T 50 H Ax
R gy . RAEAREIEER MR FIGRERT, HARR 2405(100.81 M)FEIES YOLO &5k
o ASKATEIT 9] NFIRZE RGBT R AR R, B RARUESE % S0 M LT, [FRLRFF mAP@S0 MK
T 73%; 454 TensorRT SFHEFEAEMELS, i — PHETHHERRH AL, DUERC/K NHLEE N S5 5 IEZ IR T & 13
BEK MO, BRI VE I KR (I EE WAL T 1 m)BIBkES 5, TR REN S OB + A SR
2 B RANLE], SRTHEG e B SRS EtE . FR, SIANAEE S S ERBEEN AR, HHE
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