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摘  要 

点云配准的核心是通过求解源点云与目标点云的最优刚性变换矩阵实现两者对齐，其性能直接影响同步

定位与测绘、三维重建等领域的应用效果。然而，传统算法存在配准精度低、耗时久及鲁棒性不足的问

题。为此，本文提出一种哈希函数与鲸鱼优化算法(WOA)协同的点云配准方法：利用哈希函数对高维点

云特征进行低维映射，快速筛选潜在匹配点对；再通过鲸鱼优化算法对粗配准矩阵进行迭代优化，提升

变换参数精度。以斯坦福公共点云数据集的Bunny、Dragon、Buddha和Armadillo模型为实验对象，将

所提算法与SAC-IA、FPCS、PCA三种传统算法对比。实验结果表明，本文算法在配准时间与精度综合性

能上均显著优于对比算法。 
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Abstract 
The core of point cloud registration is to align the source point cloud and target point cloud by 
solving the optimal rigid transformation matrix, and its performance directly affects the applica-
tion effects in fields such as simultaneous localization and mapping (SLAM) and 3D reconstruction. 
However, traditional algorithms suffer from problems of low registration accuracy, long time con-
sumption, and insufficient robustness. To address these issues, this paper proposes a point cloud 
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registration method that collaborates hash function with Whale Optimization Algorithm (WOA): the 
hash function is used to perform low-dimensional mapping of high-dimensional point cloud fea-
tures, enabling rapid screening of potential matching point pairs; then the Whale Optimization Al-
gorithm is adopted to iteratively optimize the coarse registration matrix, improving the accuracy of 
transformation parameters. Experiments are conducted on the Bunny, Dragon, Buddha, and Arma-
dillo models from the Stanford public point cloud dataset, and the proposed algorithm is compared 
with three traditional algorithms (SAC-IA, FPCS, and PCA). The experimental results show that the 
proposed algorithm significantly outperforms the comparison algorithms in terms of the compre-
hensive performance of registration time and accuracy. 

 
Keywords 
Point Cloud Registration, Hash Function, Registration Matrix, Whale Optimization Algorithm 

 
 

Copyright © 2026 by author(s) and Hans Publishers Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
 

1. 引言 

随着现代信息技术和扫描设备的快速发展，点云数据已经成为表征三维世界的主要数据格式。点云

在不同领域有众多应用，包括机器人[1]、生物医学[2]、道路和建筑测绘[3]、城市建模[4]、自动驾驶[5]和
增强现实[6]。点云配准作为点云数据处理的关键环节，其目标是通过求解刚性变换，将不同视角或时刻

采集的源点云与目标点云精准对齐，为后续的点云融合、模型重建提供基础。然而，实际中存在的点云

规模大、重叠率低、噪声干扰及几何结构重复等问题，导致传统配准算法难以兼顾精度与效率。 
传统的点云配准方法，如采样一致性(SAC-IA)算法[7]，基于 RANSAC 框架通过 FPFH 特征匹配求解

刚性变换，但随机采样导致时间复杂度高达 ( )sO N  (N 为点云规模，s 为采样点数)，大规模数据下效率

低；且对特征半径、内点阈值等参数敏感，不当设置易引发误匹配，低重叠率场景中易陷入局部最优。4
点全等集(FPCS)算法[8]通过共面四点距离比匹配点对，虽能提供一定精度，但四点组合数随点云规模呈

( )4O N 增长，计算开销极大；共面性假设在曲面模型、大角度旋转或噪声场景中易被破坏，导致匹配失

效。PCA 算法[9]是将点云主轴对齐并进行主轴校正从而完成粗配准任务，但对初始变换参数极为敏感，

初始位姿偏差较大时易收敛至局部最优；而噪声、离群点会直接扭曲协方差矩阵的估计结果，导致主方

向判断偏差，最终配准精度大幅下降。此外，Liu [10]提出了一种基于模拟退火和马尔科夫链蒙卡特罗的

配准算法，虽然在全局优化能力上优于传统 ICP 算法，然而模拟退火过程可能会因为参数设置的不合理，

导致计算效率低下，收敛速度慢。Wu [11]利用三维点云集的几何特征，即曲率值来确定相应的点，然而，

该算法计算量大，导致配准效率降低。Choi S [12]利用点云单应性增强算法的鲁棒性，采用点对点对应方

法最小化计算开销。Ying [13]等提出了一种尺度配准算法，该算法通过把尺度因子与迭代最近点算法融

合，在一定程度上解决了配准过程中的尺度问题。但在处理点集规模较大的点云数据时，迭代运算所需

的时间较长，计算效率欠佳。Fan [14]介绍了一种改进的 3d-正态分布变换(NDT)算法，该算法虽减少了配

准迭代次数，但仍然需要大量的计算。 
本文提出了一种新的混合点云配准框架，该框架将哈希函数与鲸鱼优化算法协同集成。我们的方法

利用哈希函数将高维点云的特征映射到低维代码，在保持精度的同时，实现了高效匹配点对的搜索，之

后，我们采用鲸鱼优化算法来细化配准矩阵，WOA 作为一种新型元启发式算法，通过模拟座头鲸“气泡
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网捕食策略”，兼具全局探索与局部开发能力，可有效避免局部最优。这种双重优化机制在不影响配准

精度的情况下实现了较好的配准时间。 

2. 传统点云算法 

2.1. SAC-IA 算法 

SAC-IA 算法基于随机采样一致性(RANSAC)框架，通过特征匹配与迭代优化求解刚性变换，其核心

步骤如下： 
1) 特确定阈值 d ，选取源点云中与 qP 之间距离大于 d 的点作为采样点，保证采样点之间的 FPFH 具

有特异性。 
2) 随根据源点云中的采样点所具有的 FPFH 特征，在目标点云中搜索，将目标点点云中具有相似

FPFH 特性的点作为采样点的对应点。 
3) 内通过源点云中的采样点和目标点云中的对应点，计算点云对之间的变换矩阵，并求解配准误差 

用于对配准性能的判定。使用 Huber 罚函数[15]来表示配准性能，记为 ( )
1

 
n

j
j

H l
=
∑ ，表达式为： 
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21 ,
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j
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式中： lm 为给定值； jl 为经变换后第 j 组对应点之间的距离差值，重复以上步骤，将获得的最小误差的

变换矩阵用于后续配准。 
但是 SAC-IA 算法也存在一定的局限性，RANSAC 需多次随机采样，时间复杂度为 ( )sNΟ  (s 为采

样点数)，FPFH 特征半径、内点阈值 ε 等参数需人工调优，不当设置容易导致误匹配或配准失败，且其依

赖初始采样点质量，在低重叠率或复制几何场景中易陷入局部最优解。 

2.2. FPCS 算法 

FPCS 算法首先在目标点云中选取共面的 4 个点，使它们组成一组基，再根据刚性变换后交点所占线

段比例不变的特性，在与之相对应的源点云中寻得 4 个共面点，继而计算出对应的变换矩阵。 
在目标点云 P 中取一个并非全共线的共面四点集 ip ， , , , ,ip P i a b c d∈ = ，作为一组基，计算 

1 a bd p p= − ， 2 c dd p p= − 。 
令线段 ab、cd 相交于点 e，则两线段独立的比率为 

 1
a er
a b
−

=
−

 (2) 

 2
c er
c d
−

=
−

 (3) 

根据刚性变换中所占线段比例不变的特性，在源点云Q 中能提取出所有在一定范围内可以与 ip 相符

合的四点集合 iq 。 
在距离 1d 、 2d 的阈值下，寻找最优刚性变换，使两组对应四点集足够接近。 
同样 FPCS 算法也存在一定的局限性，四点匹配组合数为 ( )4Ο N 。计算量随点云规模急剧增长，实

时性差，共面性与距离比假设在曲面、噪声或大角度旋转场景中易被破坏，导致匹配失败；且均匀点云

密度要求高，稀疏或非均匀分布点云中难以找到有效四点集。 
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2.3. PCA 算法 

PCA 是一种常用的数据简化分析方法，通过线性变换提取数据的主要特征分量，可用于降低数据的

维数，同时保留数据对差异的最大贡献信息。因此，对于点云数据，PCA 可以提取点云自身的 3 个互相

垂直的主成分向量，即可视为主轴方向。基于 PCA 的粗配准方法主要利用点云的主轴方向进行配准，步

骤如下： 
1) 给定两片点云 { }3 1,| 2, ,iP p R i N= ∈ =  和 { }3 | 1, 2, ,jQ q R i M= ∈ =  ，可求得两片点云的协方差

矩阵 ovC ： 

 
( )( )
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1

n
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j
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N
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=
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其中，
1

1 n

i
i

P p
N =

= ∑ ，
1

1 m

j
j

Q q
M =

= ∑ ，代表点云中点，用于数据去中心化。 

2) 通过奇异值分解计算协方差矩阵 ovC 的特征值与特征向量： 

 
T

T
ovP P P P

ovQ Q Q Q

C U D V

C U D V

 =


=
 (5) 

其中， PU 和 QU 是 3 × 3 的矩阵，即两组点云的主方向。 
3) 通过式(6)可计算出初始刚体变换矩阵 ( )0 0,R T ，经过式(7)旋转变换，可得到主轴对齐的点云 P′。 

 
1

0

0 0

P QR U U

T Q R P

− =


′= − ×
 (6) 

 0 0P P R T′ = × +  (7) 

然而，对于两片相似的点云来说，虽然实现了主轴对齐，但存在主轴反向的可能性。两片点云在每

个主轴都可能出现反向的问题，如果按照主轴方向对齐的方式配准，应有 8 种对应关系，但其中只有 1
种是正确的。因此，对初始刚体变换矩阵 ( )0 0,R T 进行校正的目的是从 8 种情况中选择正确的对应关系。 

4) 对主轴反向的问题进行校正 
基于 PCA 的点云粗配准算法对于主轴反向处理的方法是通过式(8)分别计算 8 种情况的平均均方根

误差，取误差最小时对应的变换矩阵 ( )0 0,R T′ ′ ，即为正确的粗配准变换参数。 

 ( )( )T

1

1 n

error i i i i
i

E p q p q
N =

′ ′= − −∑  (8) 

3. 本文方法总体框架 

针对传统算法的局限性，本文提出融合哈希算法与 WOA 结合的点云配准算法：该方法通过哈希函

数实现匹配点对的高效筛选，利用 SVD 求解初始配准矩阵，再通过 WOA 对变换参数迭代优化，实现精

度与效率的协同提升。其核心优势在于：鲸鱼优化算法通过模拟座头鲸的“气泡网捕食策略”，依托收

敛因子 a 的线性衰减特性与随机向量 A、C 的动态调节，实现全局探索( 1A > 时随机搜索新解空间)与局

部开发( 1A < 时向当前最优解聚集)的自适应平衡，即可有效降低对初始位姿的敏感性，避免算法陷入局

部最优；哈希桶与法向量的联合筛选机制，通过哈希码快速缩小匹配范围，大幅降低了对人工阈值参数

的依赖，提升了复杂场景下的匹配稳定性；球面哈希通过半径、法向量的空间分区策略，对点云密度非
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均匀性具有更强的适应性，结合法向量相似度对噪声干扰的过滤作用，进一步增强了算法的鲁棒性。 
本文所提方法的流程如图 1：利用哈希函数将高维点云特征映射为低维哈希码，降低特征匹配的计算

复杂度；通过奇异值分解(SVD)方法，基于筛选后的匹配点对计算初始配准矩阵，并将该结果作为 WOA
的初始种群；最后通过 WOA 迭代优化，获取最优刚性变换矩阵，完成点云配准。 
 

 
Figure 1. Method flow chart of the proposed point cloud registration algorithm 
图 1. 所提点云配准算法的方法流程图 

 

 
Figure 2. Schematic diagram of hash transformation and data lookup 
图 2. 哈希变换与数据查找示意图 
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3.1. 哈希函数 

在点云处理中，暴力搜索匹配点对的效率极低。TeodoroG [16]提出的 LSH 方法在高维大规模数据场

景下实现了快速检索与高准确率之间的平衡，为图像搜索、实时多媒体检索等网络级应用提供了高效的

解决方案。Liu [17]提出了 DSH 方法，该方法将图像检索的平均精度均值(mAP)提高了 20%，并支持百万

级数据。Zhu [18]通过哈希表索引和长码分区优化了效率、准确率和存储。 
本文采用哈希函数对特征点云进行优化处理，在保证精度的前提下，显著提高了处理效率。它通过

特定的算法对输入数据进行处理，提取数据的关键特征并转化为相对简短且标识该数据的哈希值，将高

维数据映射到低维空间。在点云配准中，首先从点云数据中提取具有代表性的特征，如点的坐标、法向

量等，然后将这些特征通过特定的哈希函数进行编码，得到对应的哈希码；进而可通过快速比较哈希码

筛选出可能匹配的点云部分，减少后续精确匹配的计算量，并结合点云的法向量相似度判断是否为匹配

点，最终利用匹配点对计算出粗略的配准矩阵。哈希变换与数据查找的核心逻辑如图 2 所示，源点云与

目标点云的高维特征分别经哈希函数处理后生成低维哈希码，通过哈希码的快速匹配的快速匹配可缩小

搜索范围，有效降低特征匹配的计算复杂度，为后续初始配准矩阵的求解提供高效支撑。 

3.2. 法向量的估计 

法向量作为点云处理中最基本的一种特征描述符，其估计精度直接影响匹配可靠性。本文采用 K D−

树与 PCA 结合的方法估计法向量：首先利用 K D− 树对点云数据进行空间划分，可以获得每个点的 K 近

邻点，然后采用 PCA 方法来构建点的协方差矩阵；最后对协方差矩阵进行特征分解，可以得到特征值和

特征向量，最小特征值对应的特征向量即为采样点的法向量。协方差矩阵C 可表示为[19]。 

 ( )( )T
, ,

1

j i

i i j i i j i
P Ki

C P P P P
K ∈

= − −∑  (9) 

式中： iK 表示第 i 个采样点的 K 近邻集合； iP 表示第 i 个采样点； ,i jP 表示采样点 iP 的第 j 个近邻点。 
法向量的引入使哈希码从“空间位置唯一”变换为“位置 + 几何特征双重唯一”，让哈希桶内聚集

的点不仅空间邻近，且局部几何特性相似，有效降低误匹配率，为后续匹配精度提供保障。 

3.3. 哈希表的构建 

哈希表的核心作用是快速定位潜在匹配点对，通过精细化分桶策略减少哈希冲突，提升匹配效率。

本文哈希表的构建流程如下。 
球面坐标离散化：将点云的半径与法向量转换为球面坐标，并进行分桶处理： 
1) 半径分桶： 

 
10.0i r

rr N = ×  
 (10) 

式中 ir 为半径分桶的桶索引， r 为采样点到质心的距离。 
2) 法向量哈希编码：将法向量 ( ), ,x y zn n n=n 转换为球面坐标并分桶 

 法向量球面坐标： 

  

( )

arctan

arccos

y
normal

x

normal z

n
n

n

θ

ϕ

  
=  

  
 =

 (11) 

式中 normalθ 为法向量球面坐标的极角， normalϕ 为法向量球面坐标的方位角， xn ， yn ， zn 为法向量的三维分量。 
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 法向量分桶： 

 
2

normal
i

normal
i

N

N

θ
θ

θ

ϕ
Φ

 + π = ×  π  


 Φ = ×  π 

 (12) 

式中 iθ 为极角对应的桶索引， iΦ 为方位角对应的桶索引。 
综合坐标和法向量的分桶索引，生成全局哈希键值： ( )i i iN NH Nr θ θΦ Φ× × + × +Φ= 。 
哈希表通过球面坐标离散化与法向量编码实现匹配点对快速检索，核心参数设置如下：半径分桶数：

450；法向量极角分桶数：100；法向量方位角分桶数：100。 
通过上述策略，哈希表可快速定位空间位置与几何特征均相似的点对，大幅缩减匹配搜索空间，为

SVD 求解可靠初始变换矩阵提供数量充足、一致性强的匹配点对。 

3.4. 初始配准矩阵的求解 

若已经得到两个不同视角下的特征匹配点对是 { }| , 1, 2, ,i iP p p P i n= ∈ = 
和 

{ }| , 1, 2, ,i iQ q q Q i n= ∈ = 
， ip 和 iq 均为 3 × 3 的向量，则所求解旋转矩阵 R 和平移矢量T ，应使下面

的目标函数最小。 

 ( ) 2

1

n
k kk

E q Rp T
=

= − +∑   (13) 

采用 SVD 分解法[20]，具体步骤如下所示： 
1) 对于空间点集 { }| , 1, 2, ,i ip p P i n∈ = 

和 { }| , 1, 2, ,i iq q Q i n∈ = 
分别计算 p 和 q ， ( 其中

1

1 n

i
i

p p
n =

= ∑ ；
1

1 n

i
i

q q
n =

= ∑ )。 

2) 分别计算 ip′和 iq′： 
 i ip p p′ = −    (14) 

 i iq q q′ = −    (15) 

其中 1,2, ,i n=  。 
3) 由式(13)，(14)，(15)可得： 

 2

1

n
i ii

E q Rp
=

′ ′= −∑   (16) 

4) 对于式(16)采用 SVD 矩阵分解法得到 R 。 
5) 求解平移向量T ： 

 pT q R= −  (17) 

求出旋转矩阵 R 和平移向量T 后对点Q 中的任意一点 q ，可由式(18)求得点 q转换到点集 P 坐标系

下的对应点 p，进而实现数据的拼接。 

 ( )1p R q T−= −    (18) 

3.5. 鲸鱼优化算法 

鲸鱼优化算法[21]是通过模拟自然界中座头鲸的“气泡网捕食策略”实现优化搜索目的，兼具全局探

索与局部开发能力，被广泛应用于图像处理、特征选择和调度优化等领域。WOA 的核心包括三种位置更

新策略。 
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3.5.1. 包围猎物 
当鲸鱼种群定位到猎物位置后，通过协同游动形成环状包围圈，并逐步缩小包围范围，该过程是种

群个体向最优解聚集的局部开发行为。定义向量 1r 、 2r 和 a ，其中 1r 和 2r 是分量取值范围为[0, 1]的随机向

量， a 的分量取值随着迭代次数的增加从 2 减小到 0。根据式(19)和式(20)计算向量  A 、C ，用于控制鲸

鱼个体的搜索方式： 
 12A a r a= ⋅ −    (19) 

 22C r= ⋅    (20) 

当 A 小于 1 时，表示当前鲸鱼个体距离最优个体较近，根据公式(21)和公式(22)包围最优个体： 
 ( ) ( )bestD C X t X t= −′ ⋅    (21) 

 ( ) ( )1 bestX t X t A D+ = − ⋅ ′    (22) 

其中， ( )bestX t 表示当前最优个体的位置。 

3.5.2. 随机搜索  
当鲸鱼种群无法感知猎物位置时，通过随机游走探索新解空间，实现全局勘探。当 1A > 时，则当前

鲸鱼个体距离最优个体较远，根据公式(23)和公式(24)随机搜索： 

 ( ) ( )*  D C Xrand t X t= ⋅ −       (23)  

 ( ) ( ) *1X t Xrand t A D+ = − ⋅     (24) 

其中， ( ) Xrand t 表示当前鲸鱼种群中的任意个体。 

3.5.3. 气泡网捕食 
在气泡网捕食阶段有两种捕食方式：收缩包围和螺旋更新。螺旋更新通过构建对数螺旋路径方程，

精确模拟了鲸鱼个体以当前最优解为中心，螺旋式上升包围猎物的生物行为。在此阶段，鲸鱼个体会根

据公式(25)进行攻击： 

 ( )
( )

( ) ( )
, 0.5

1
e cos 2 , 0.5

best

bl
best

X t A D p
X t

D l X t p

− ⋅ <+ = 
⋅ π′ ⋅ + ≥

 (25)  

其中，D 为当前个体与最优解之间的距离， p 是[0, 1]的随机数，此时C 的值为 1。b 和 l 是控制螺旋线形

状参数。WOA 通过模拟座头鲸气泡网捕食策略优化配准矩阵，核心超参数与实现参数设置如下：最大迭

代次数：200；鲸鱼种群数量：25；平移参数约束：lb_trans：−0.5、上界：0.5；旋转角约束：[−π, π]；螺

旋线形状参数：0.5；收敛因子(a)衰减公式：a = 2.0 × exp(−4.0 × iter/max_iter)。  

3.6. WOA 优化配置与数学定义 

3.6.1. 核心参数化方式 
刚性变换矩阵 4 4R ×∈T 由旋转矩阵 3 3R ×∈R 和平移向量 3R∈t 构成，参数化向量定义为： 

 
T

, , , , ,x y zt t tα β γ =  x  (26) 

其中： 
, ,α β γ 分别为绕 X、Y、Z 轴的旋转角； 
, ,x y zt t t 分别为沿 X、Y、Z 轴的平移量。 

旋转矩阵 R 由欧拉角通过轴角变换推导，数学表达式为： 
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 ( ) ( ) ( )X Y Zα β γ= ⋅ ⋅R R R R  (27) 

其中各轴旋转矩阵为： 

 ( ) ( ) ( )
1 0 0 cos 0 sin cos sin 0
0 cos sin , 0 1 0 , sin cos 0
0 sin cos sin 0 cos 0 0 1

X Y Z

β β γ γ
α α α β γ γ γ

α α β β

−     
     = − = =     
     −     

R R R  (28) 

最终刚性变换矩阵形式为： 

 T
 

=  
 

R t
T

0 1
 (29) 

3.6.2. 适应度函数的具体形式 
WOA 的适应度函数以“配准均方根误差(RMSE)”为核心指标，目标是最小化变换后源点云与目标

点云的距离误差，数学定义如下。 
设源点云 { }3R | 1,2, ,iP p i N= ∈ =  ，目标点云 { }3R | 1,2, ,jQ q j M= ∈ =  ，经刚性变换T 后源点云

为 { }| 1, 2, ,iP p i N=′ = +R t 
。 

对每个变换后点 ip P′∈ ′，通过 K 近邻搜索找到目标点云Q 中距离最近的点 *i
q ，适应度函数为： 

 ( )
2

1 2

1 K
ii i

f x p q
K ∗=

−′= ∑  (30) 

4. 实验结果与分析 

实验选取斯坦福公共点云数据模型中的 Bunny、Dragon、Buddha 和 Armadillo 验证以上算法的性能。

如图 3 所示为初始点云可视化结果，其中绿色点云为源点云、红色点云为目标点云，为了证明本文方法

的有效性，分别使用 SAC-IA 算法、FPCS 算法、PCA 算法和本文方法对点云数据进行配准实验，并对结

果进行分析。 

4.1. 配准时间分析 

运行时间是配准算法应用价值的核心指标，表 1 数据显示本文算法时间效率优势显著：相较于 SAC-
IA 算法，在四种模型上耗时分别降低 52.98%、64.14%、8.60%、37.38%，核心得益于哈希函数通过高维

特征低维映射与空间分桶，缩减匹配点对搜索范围，规避了随机采样的高额开销；与 FPCS 算法相比，除

Dragon 模型耗时持平外，其余模型耗时降低 14.76%~73.57%，破解了四点组合数指数增长的计算瓶颈；

相较于 PCA 算法，Buddha、Armadillo 模型耗时分别降低 55.46%、16.24%，仅 Bunny、Dragon 模型耗时

略高，但四种模型平均耗时(21.354 s)仍低于 PCA 算法(29.731 s)，实现效率与精度协同优化。实验表明，

本文算法通过哈希函数降维分桶与法向量验证降低匹配复杂度，结合 WOA 气泡网策略加快参数收敛，

在四种模型上运行时间显著改善，综合性能稳定可靠，时间效率优于传统方法。 
 

Table 1. Algorithm runtime (s) 
表 1. 算法耗时(s) 

Method SAC-IA FPCS PCA Proposed algorithm 

Bunny 58.238 32.123 25.321 27.382 
Buddha 74.929 52.967 60.333 26.871 

Armadillo 11.956 41.234 13.046 10.928 
Dragon 32.312 23.012 20.223 20.234 
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Figure 3. Comparison of registration results 
图 3. 配准结果比较 

4.2. 配准精度分析 

为评估各算法的配准精度，本文选用均方根误差(RMSE)作为核心评价指标。为消除随机误差对结果

的干扰，每个实验均独立重复 5 次，通过计算平均 RMSE 值确保实验结果的可靠性与统计显著性。如表

2 所示，本文算法在所有测试模型上的 RMSE 值均显著低于对比算法，平均精度提升 52.36%~71.89%其

中，Bunny 模型的 RMSE 降至 1.261 mm，较 SAC-IA 算法提升 48.61%；Armadillo 模型 RMSE 为 2.131 
mm，较 PCA 算法提升 46.92%。本文算法的精度优势源于 WOA 的全局优化能力与哈希函数的匹配稳定

性：WOA 通过收敛因子线性衰减与随机向量动态调节，实现全局探索与局部开发的自适应平衡，有效摆

脱了传统算法对初始位姿的强依赖性：哈希函数结合法向量的双重筛选机制，降低了误匹配率，为 SVD
求解可靠初始变换矩阵提供了高质量四配点对，为后续优化奠定了良好基础。 
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Table 2. Registration accuracy RMSE (mm) 
表 2. 配准精度 RMSE (mm) 

Method SAC-IA FPCS PCA Proposed algorithm 

Bunny 2.454 5.224 4.715 1.261 

Buddha 2.512 5.523 4.232 1.592 

Armadillo 3.343 3.213 6.823 2.131 

Dragon 3.541 4.623 5.747 2.928 

4.3. 消融实验与鲁棒性分析 

4.3.1. 消融实验设计 
为验证本文算法各模块的独立贡献，设计如下消融实验方案：以 Armadillo 模型为例，各模块消融实

验结果如表 3 所示： 
 

Table 3. Ablation experimental results  
表 3. 消融实验结果 

实验配置 RMSE 均值(mm) 标准差 平均耗时(s) 

本文算法 2.703 1.542 15.406 

仅哈希 + SVD 6.312 1.345 1.873 

仅 WOA 优化 3.075 1.538 157.737 
 

根据表 3 的消融实验结果，本文算法在配准精度、运行效率与模块协同性方面展现出显著优势。与

仅哈希 + SVD 配置相比，完整算法的 RMSE 均值降低 57.2%，证明 WOA 优化模块对初始变换矩阵的迭

代优化能有效提升配准精度；与仅 WOA 优化配置相比，完整算法的运行时间缩减 93.4%，表明哈希匹配

模块通过快速筛选高质量初始匹配点对，极大提升了算法效率。在稳定性方面，完整算法标准差与各独

立模块相当。实验结果验证了哈希匹配与 WOA 优化模块的协同增强效应：哈希匹配为 WOA 提供接近

全局最优的初始解；WOA 则通过智能搜索策略对初始解进行精细调优，在保证算法实时性的同时保证了

配准精度。 

4.3.2. 鲁棒性测试 
为评估算法在不同挑战场景下的鲁棒性，以 Dragon 模型为例，我们测试向点云按比例添加高斯噪声

进行配准效果测试；通过随机扰动点云角度(±10˚)来进行点云不同重叠率配准效果测试。 
 

Table 4. Algorithm registration accuracy under different noise levels 
表 4. 不同干扰水平下的算法配准精度 

测试场景 干扰强度 本文算法(mm) 配准成功率(%) 

高斯噪声测试 

无噪声 1.812 100% 
0.5% 2.342 90% 
1.0% 4.96 80% 
1.5% 4.722 80% 

离群点个数 

0 1.816 100% 
100 3.421 90% 
200 3.523 90% 
300 2.616 90% 
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由表 4 数据可知，本文算法在高斯噪声与离群点干扰场景下展现出良好的抗干扰能力：无噪声干扰

时，算法配准精度达 1.812 mm，配准成功率 100%，奠定了可靠的基础性能；随着高斯噪声强度从 0.5%
提升至 1.5%，配准精度虽从 2.342 mm 波动至 4.96 mm 再回落至 4.722 mm，但配准成功率仅从 90%降至

80%，未出现大幅衰减，表明算法对中高强度高斯噪声具有一定的容忍性；在离群点干扰测试中，即使离

群点数量从 0 增加至 300 个，配准成功率始终稳定在 90%以上，且当离群点为 300 个时，配准精度较 100
个、200 个离群点场景反而有所提升，体现了哈希函数与法向量联合筛选机制对离群点的有效过滤作用。

综上，本文算法在高斯噪声干扰与离群点存在的复杂场景中，仍能保持稳定的配准精度与较高的成功率，

抗干扰鲁棒性突出。 
 

Table 5. Algorithm performance under random angular perturbation 
表 5. 随机角度扰动下的本文算法性能 

点云数据 配准精度(mm) 配准时间(s) 

Bunny 2.287 7.851 

Buddha 3.971 23.561 

Armadillo 2.152 4.334 

Dragon 3.037 6.709 

 
表 5 结果显示，本文算法在随机角度扰动导致点云重叠率变化的场景中，对不同几何结构的点云模

型均表现出稳定的适配性。整体来看，无论点云模型的几何复杂度如何，本文算法均能在随机角度扰动

场景下完成有效配准，未出现配准失效的情况，表明算法对角度扰动引发的点云重叠率变化具有较强的

适应性，在不同结构特征的点云配准任务中均能稳定发挥作用。 

4.3.3. 鲁棒性分析结论 
综合上述测试结果，本文算法在复杂干扰场景与角度扰动场景下的鲁棒性得到充分验证：在高斯噪

声与离群点干扰下，未因干扰强度增加而出现崩溃性下降，显著优于传统算法在噪声或离群点场景中易

出现的误匹配、精度骤降问题。这一优势源于哈希函数的精准匹配筛选与 WOA 的自适应优化，双重机

制确保算法在复杂场景中仍能稳定发挥配准作用。 

5. 结论 

本文提出一种哈希函数与鲸鱼优化算法(WOA)协同的点云配准新方法，针对传统算法配准精度低、

耗时久、鲁棒性不足的核心问题，构建了“高效匹配–精准优化”的双重机制，主要研究成果如下：引入

哈希函数实现高维点云特征的低维映射，结合球面坐标离散化与法向量编码构建哈希表，大幅缩减匹配

点对搜索空间，降低了计算复杂度，采用 WOA 对初始配准矩阵进行迭代优化，利用其“气泡网捕食策

略”的全局探索与局部开发平)衡能力，有效避免局部最优解，提升了变换参数的求解精度，降低了算法

对初始位姿的敏感性，斯坦福数据集的实验验证表明，所提算法在点云模型上的配准时间与精度综合性

能显著优于传统算法，实现了效率与精度的协同提升。 
未来研究将围绕以下方向展开：优化 WOA 的迭代机制，引入自适应权重或混合优化策略，进一步

缩短迭代时间，提升大规模点云处理的实时性；探索基于深度学习的匹配点对筛选机制，结合点云语义

特征，增强算法在低重率、高声、复杂几何结构场景下的鲁棒性；设计更贴合点云配准特性的适应度函

数，融合多维度误差指标，进一步提升配准精度与稳定性拓展算法在自动驾驶、三维重建等实际场景中

的应用范围。 
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