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Abstract

This paper addresses the issues of insufficient multi-scale feature adaptability, inadequate contextual
information fusion, and limited capability in capturing deformed defects in steel surface defect
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detection by proposing an improved model, DCD-YOLO, based on YOLOv11n. First, a Dynamic Convolu-
tional Mixed Block (DCMB) is designed to replace the Bottleneck part of the C3k2 module in the back-
bone network. Through a dynamic convolution kernel weight mechanism, it adaptively adjusts the con-
volution kernel weights, enhancing feature extraction capabilities for multi-scale defects. Second, a
Context-Guided Spatial Feature Reconstruction Pyramid Network (CGRFPN) is designed. By using the
Rectangular Self-calibration Module (RCM) and Pyramid Context Extraction Module (PCE), the model’s
ability to model defect foreground and background is strengthened, improving the distinction between
defects and a complex background. Finally, by introducing a Deformable Attention mechanism (DAt-
tention) to replace the fixed attention mechanism in the PSA module, dynamic sampling of attention is
achieved, enhancing adaptability to deformed defects. Experimental results show that the improved
model achieves a mAP@0.5 of 66.9% on the GC10-DET dataset, an increase of 3.3% compared to the
original YOLOv11n. Meanwhile, the model’s detection precision and recall increased by 1.7% and 2.8%,
respectively, effectively addressing detection challenges such as multi-scale defects and background
suppression, meeting industrial requirements for accuracy and recall.
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PR R DA TR RO IR R, T N UGG . ITAA AR AUENTR . A AR
B[, AR R B RE 1 K i L e S TR SR, AEREL. W EL. RSN
AT, AR S P ERAL B, BRI R AFERIE[2] [3]. IXLRBREE A BN ) 0 S P e
WA REAE G S I 5 R WA, MRS B i, s ERE TR . L, @R R
B 2 TR R A A AR S PR s B0k M v ot B Jre A SR B IR T

e G AN AR T SR e A I BN T H AL BRSPS T35, BRI B A E . N H A -
WM R RIWT, 5320857 164 JCEREE B MR, kR 5w, HAIReRIK,
e A3E RN R AL P I iR K e oK MBI 705 I AR 0 (S e A ) 28 1 sl 3% T 1 Bk P
TR T AR R IT RS A B I AR AR, R IR & 70, 30 TS v A
B s I SGE F T Skma e AT R B RN SRR RE DA IR BT, RSITES A NE R 5
T, A A ORI B T SR BN G , JEik 2 Tk s SR

AR, BETIRPE S ST B AAS I 7 i 58 A L 0K (Y B SRFAIE S ST RE D, AR B3R T kB A 0] v e B
RS AT R ITIE P Al 774 DA Faster R-CNN [4]. Mask R-CNN [5]o8E, @i “fix
WA + 2REA” B AR, T RGN BAR[GIAIREEE, (H 2 B Bt 55 B B
18, A DL 2 TV SERHEZER . — Bl 7572 BL SSD [7]. YOLO [818E, #4 H br s 28 5 FHHE [ 9 5 &
g, B HARER S OLE, HEEDEER, HOMMTACHAE 0, AR R
IR Nt DRI — IR B TS B, B I 7C 2 B SRR PRI RE 77« FRIERR S PR T ER
TR = KI5 i FETT LAl : SCHR[ONR Y 17— PG sk B A AR CFE-YOLOVSs, 1ZAH A7 Rt g vk 1
B 2 T e O A N ) T R, (ELAE N2 T At R o A DU A 55 I D AR A AE SR PR, SCRR[10]32 1 — b
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YOLOV8N-MDC M4 R THI SR AR I 535, RHRFESREL . H br A F 2 RPERT I 5 AT 7O, 38
T R A RS FE . Zhang [11125 82 1 T —Fh ESI-YOLOVS FIANHF 2 BRI AG I 5%, % 5 imE T
KA BERER IV RS T IR, BN T 2 REERHIE R A DAY 5 8652 B FRFAE Rk R

R FAERFAE SR IS R R G U7 TS — @ bR, EAE B A3 5t HARR I AT A7 AE 2 RBEARFAE 1
AT ZRAEMAIRPOTR, BENZRES B, N, AT ZA SO, 5 H A
! DCD-YOLO, HAkT/Ef¥E:

(1) EHXHEGBRZIEARE B RF — 1R RS B — MR & B 451 (DIMB), it 2 R
TESRECRN [ 38 AN EE R R A7 R B v o R R B AR AR, DA S v S 0 P o A 2 R R 3 12

(2) X A% GE KR AL 6 7 55 W28 BT S 22 ) R, W TE bR SC1 S s A R AR A G
(CGRFPN). iZstgidid 1 Fseas (5] SAIAREE g, $27F TREALTE R 29 5 H AR aé

(3) %% C2PSA Hifiil g vERE /1 FEIA FUE R Z R I, 5] AR B = LT (DAttention) 2 4 7
i C2DA 2514, s 1 % BB Bh A 3E RN -

(4) 7EJTUE GC10-DET Hi#a 4 b0 ub A I 5502 i) A7 Rtk

R R AR 3 BEAE TR St Inception BLHUE T B 8 AL H G HR I REERFE, (HR % [ERHIE
() G R RN S AR ROR . A SCHE K DIMB #55, @he Tl S AR S 2 RERESH, iR
LA SIS N RHESR L X TRHMERL G, BUA FPN/PAN 25448t ] P4 & 2 RBEAFAE, 6k
Z ER3EIR. AR CGRFPN 5] N TE HARHERLEL(RCM) Rl 4 735 I F SCHEUS HY(PCE), @it
23 (6] BN SCR BRI E AT SR BRI AE ST . fEFER LT T, W AR R J1(Deformable Atten-
tion) 8 i B A KA G ST AL T H ARG R, A SCK H N C2PSA itk T/ C2DA Z5tt, it — L4t
X AN FL D Fe e ) R R e

2. YOLOV1l E3ENE
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Figure 1. YOLOV11 network architecture diagram
[ 1. YOLOvV11 M4E£EH[E

YOLOV11 k& FERJE T YOLO RFIHIM 55, ELA R 5 AR B i i i s MR T 4%
FRFHREAE R B DX 288 RGN 2k o =5 T 0 285 6 S AR HE BB, 5 C3K2 bR, 5 AU He L SPPF [12]#55 PL f% C2PSA
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B, C3K2 #iig YOLOVS 1 C2F #Ebifiisids, HAT A C3k 4, AL FRFER I RE ) AL
FER H FPN [13]F0 PANet [14]14584, X T M 28 S HURRHIE AT Rl G AR URHIE & 738, 171 TR
AR BEGRFA BRI RE 770 RISk R I RRRE S A DA LT, W50 ISR 5k 85, WA it
X PR, YOLOVLL AT LA Rk il 2 Rl 5t R I H AR YOLOVLL M2 2544 I an ] 1 fros.

3. DCD-YOLO $W#+ F= T Bk M #E Ay

R YOLOVIL fEiEH H AT R t, (EAEENA R TSR AR, HHIG R 441 5 S5
JUBEARE R R IR, 14 KK FRARAM A B AR I R, ol 42 i e 5 R R 80,
NIRRT 38 A AR R A 24T 5 P SE A I o DAL, ASHIF7E3EF YOLOVLL 2tk 47 edt, #2&H 7 DCD-
YOLO il Ay, & 765 I SRS HE AN R IR B I o 2ldE 5 IR AR B 42 T 3SR & B A B
(DIMB), AT~ & C3k2 %8t 1] Bottleneck 4514 1 I FUBLER, 45 B TSI A U2 RBEHFAE; X% YOLO11
) FPN/PAN 2 ey ok 17 SR R REAE AT 2 RO RS, (8= A 200 R SOfE BRI M, #8417 BF
5| G AL EE AL G A 4% (CGRFPN), T % C2PSA [15]HE SR I [l 8 V3 B 1Rk, Toikid MAN A &
TR 2 AR OREYE, BIN T AT AR TR AIHUHI T A(C2DA) S5 ), LAIE LA AA 2 T b (1 AR TR 1 o
3.1 FIREASERER

M R BB R E L, NEERE K, C3k2 MHERFAE$E BUE FE FP R A T [ 5E B B R
FIRE, e 8 BIHEAE 2 RS R B G )3, PR S SRS FR A I S AR « ik, ARSCHH T C3k2-
DIMB 37 2 R RA R ZE RS, 2 i 204 2 R & 88 MG T 132 o0 7> 41 % . DIMB
o el R E R AN BB E 2 R R G 2, DUEREA 2 RS SRR B SR 2R E BIEAG
TR 14 B0 AR SR A AR ZR M E R IA R e 0, b £ sk P kil i e 0 S5 K6 S . . DIMB B8 o)- i
SERE 2 fioR .
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Figure 2. C3K2-DIMB module decomposition structure
[ 2. C3K2-DIMB &R 43 iR L5

311 BINEZIRERGSE
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FEBRUHE, AR5 R0 AR B P R D Hf 7 AN 1> L BT, &R 3 2 REE T
F & B BRBAREAE

KA L RERESREYE —F AT GRS, ERHTRESHEAEG: B&HE
¥ (square kernel, 113 x 3). /K F-2&i#(band kernel, 11 x 11). FEE W0 11 x 1), A E AR
FERIRFE . BEAh, BIRFINT SINBhASEALEHNLS]: I8 FRAE SR A3 B8 I8 = D RHE, Fdat 1
x 1 AR I RZ IACE K /)y, DASEIR [ 3E B R B B AL o AL A 54k I 28 % 22 ROBE BB 11 1 0
RLYH%E,  DASCHUSE S R R R S R R A N ] 3 PR .

E Kxk SHM%€oma
e O -
- CxH ............
G,
Adapt|veAngooI \ | *7
1xM

' 4

Conv 1x1
Softma
x

Dynamiclnception DWConv2d

DynamiclnceptionMixer

Figure 3. Dynamic multi-scale fusion structure
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Figure 4. Convolutional linear gated unit
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x 1 R ORRRRFE B 25 (R 4, [ S 4 5 (0 4 . I8 IR S G ARG N R (RS 8, R T
BRI Stoh 2% ()R AIE ARV IBR RN RE 7, BEAN T THR ML OV I 48 sh A Ik A0 5 B, 32 TR IER A I R
CGLU IBLEgh iy an e 4 fior.

BRI TE RGBT “BR + T + B + BB N4, R T RMER IR TR IARE
M —BRZ, ConvMIp [18]AE T 4T Hhir HE4RF1E 2 [F] (I S Bk, SR FH o0 FSRAG I FROAS 1 o B AR 1]
P BT IR I AT R A -

% =o(N(Conv2d(x;W,,b)))od 1)
y = Conv2d(x;;W,,b,) (2)
N(z)=7/C)—Z_2’uZ + 3)

o, +¢&

z

Rt o TR, T3 AR S N JORH R, FEARNRG) IR, ON AT,
d JPE BT T, Convad (xW,. b, ) FIConv2d (x:W,.b, ) %5 1 x 1 BAURAE, 3L x Flx, AHIA, WAl
W, ALE AL, b A, Sl E 5.

3.2. L5 EFHEERN S FEML%

PAN J& YOLOV11 [FHFE I &% OB, it Top-Down (A T A F) A1 Bottom-Up ( F JEiE H]_E) % 4% Rl
% backbone #ii tH1¥1 2 RBERFAE, H LR RRHEA B S PHE. (A PAN fZ/ERL T RIRM:: 250E E R
FHAAE, ZREMEGEEMEZ, FEREMPEREM, @EAITESER M. A SRR T —
CGRFPN Mg 4t & FEEH =8 HM, a8 bR SCREL, ZhaidEm G M2 RHER & =1
TR, MR AL 5 Bior. B, RCM: Rectangular Self-Calibration Module Jy%E . K e
Ht; FBM: Feature Block Module 42 FHEfl & H3;  DIF: Dynamic Interpolation Fusion g2 254 {E il & 152
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Figure 5. Contextual reconstruction guided structure
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CGRFPN [ 4% 45 K 5 1 % Co A 38 A B AE 4 7 15 0 4% (FPN) Al o 7 B0 RO AR I Pk 47 2 R
AE, BRZAE RN R SUE BARE, SRR L A B SR AT . ARIX — 8, CGRFPN 3]
AN T &7 1R SCHRIUBEEL(PCE), Bt & 735 ik & (PPA)FIAE K A AL HEBB((RCM) Rl 3k & /5 b F
G R, WIS RS GREE I S R AERE 1. EEAE R, BGHA ST RECE A MHE, (25t
B 11 Jo SRR AE S5 A | R S0k R B MR . I & B AL R A, TR SROR R EE 1 B R SUE
MR B A HERH @ It KPR B B G R, TR RE K 08 LR, (A3 6 6% 5 R A b s 7 5 s
XH. H K, CGRFPN @il T Al Ean A, ik 7 AF RERHME Bl &, @EsE R S8E
BAEBEAG R 5, ZRHERG BRI R RE A AN AU, & S A R R A (1 i
B . HIEWRARYE L TR R IR BEA I A, AN R R (RS AE X SR 1R o 1 B B AN R . R R
TEELE B E B G R, TR SAR B RRAE (Al &, 3 A5 i 008 R 15 5 o 1 1S TR AN /N 3 465 1
TERLE S o REAE (125 18] 0 FE R 598 SUE B0-P, @ sh A RBEE S, 1 LASIE UE B 5 25 a4
T AR A .

3.2.1. &F# FTRICREURER

G R SCHR B Bl IS AL R A (PPA) RN B N SCAR B H A AR . & AL SR A i
T NP SR R B B[R] — RUBE, PRI T B A HEIE B JTHLHI(RCA) [19] A MR FEIE B 77 X 4K,
SRS EREE TSR AR AR RE ). L PPA BT ZURON 1 il 2 RS MIRHIE ], TR B ALHER BL(RCM), U
Jeilid RCA JK-P/EE B B @Mt i fe 4 s N30, Rl KO BRI E R X, RE4%
JEBFNLMLP) SRS R AL, DASE SR RFE A AR Z PRI RE ST . FL A BB Sy I T 4] 6 P

PyramidPoolAgg_PCE Input
P5 1 ;
E t i Pyramid_PCE
" ca i
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Figure 6. Pyramid context extraction module
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3.2.2. BIFSHREREER

HASTRAERLE £ B AR T AN R EERHIE (U0 P3 1) C=256, P4 [f] C=512)HiERlG R, @EHES
FEUE BALIE AW R, BTz, @ R R EE X SIRE RO TR R, SRS
1 x 1 ARG v RS AR P 8 T HO O R B R E B E 5, PR s kg AT b, 20 A podE A
VERCAME B ITUAR M I R HAR A 4 B W] 7 Fros .

DynamiclnterpolationFusion
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m? N ) i1 T

C1*W1*H1 ‘
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C2*W2*H2
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Figure 7. Dynamic interpolation fusion
7. hESHRERME

3.2.3. BFHERMEER

FELRABIAY R P ] 52 AN R A R TR R ERFAIE , TR 4l v FXLRE R i R AT R FEARRAE b 5 b, 33
FRIETU Ao Wit ZHRERL AT, I RO R AR A R AR, 1 38 I R B R BE R AE ) i R
o, 24 e RO RAE A5 B 2 1 AR SR R 2R i), S A 2 1 A R B R AE (2 TR gy, 42
FHAb A BOR . HAHAE R B A 8 fis.

FuseBlockMulti
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—— H a I
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low feature Cr*WiH1 guid{

C*W1* H1
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H: |—> [ :)
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Figure 8. Multi-feature fusion structure
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3.3. AIBEEE MR C2PSA R (C2DA)

YOLO11 ) C2PSA LR FH 18] 52 4 7 1 KAF (B0 5 73 A1 B RAE AR) 5 TCi03e L2 T R P (R AR T AR O
PEASC G NIRRT 35 FI 4L (DAttention) [2018: #iJ5A 1 ] 5 8 J1R AR, -TH 1 X ATk BE I B -
ZUGEARTE M AR IE ARG R, SIS MHBEEE R SRR, HANESI AL E SIS E S, RIHEE
DRI BRFIRE ), BUGIE IR T C2PSA &N, AEINd 228, HEud 5 aHmE 9 s,

C2PSA PSABlock C2DA DABlock

DABlock

____________________

| Conv | O | Conv |

Figure 9. Deformable attention enhancement module
9. AJEREESIEIRRIR

4, SCINEER R
4.1, SCIOEREE

SZIGF- 48 F NVIDIA GeForce RTX 3090 1) GPU, #:1F %24 Windows. £ % 2% S HE4E N Pytorch
2.6.0, Python3.12, Cuda12.6. SCIMEISEANE 1 FiR.

Table 1. Parameters of the experimental environment
1 LBREBH

Experimental parameter Value
Epoch 300
Batch size 32
Optimize SGD
Image Size 640
Learn Rate 0.01
Momentum 0.937

4.2. YRR K TALE

SEYSAE H GC10-DET [21]1%0E & R I e AT 7Y, A5 10 Mo W) 48 RISk a2 T, dnap
L. IRgE. T ATRAER. KBE. BT, 2250, AW, Lyt PRAES YR .. 23R £ AR 2294 5k
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KIEEE, BT shBa AR R T . Sei 2 I8 7:2:1 i LEBIRE AL 7> DI 2056 . deiE g At it 4k,
WA . BUD . M A LA R R S DURGRE R I B SRR AR B, S L N SR
A i R 23 SOFRTHR R Bz AL RE /1, 37785 2 SR 3% 3570 sk IR, hig G kil nl&l 10
B o

Figure 10. Examples of image defects. (a) Punching; (b) Weld; (c) Crescent-shaped fine crack; (d) Water stain; ()
Oil stain; (f) Silk stain; (g) Inclusion; (h) Rolling pit; (i) Crease; (j) Waist crease

10. BEMRERFETRG. (a) HFL; (b) 1B4E; (c) FARMLE; (d) KBE; (e) MBE; (F) £234; (9) TZ4; (h)
in; () #R; () BEEMTR

4.3. TIER
N T VA AR SR HE ARG IS 2L E A R THT R B A AT 2% R PR R, SIZIG SR F K 26 P (precision). A [
R (recall). *F#1k5 % AP (average precision). “F-¥J#% &£ {4 mAP (mean average precision)-5 & Params
(parameters){E VMM FE bR . S FabRit AN
TP

= x100%, 4)
TP+FP
Re— " .100%, (5)
TP+FN
1
AP = [PdR, (6)
0
1 n
mAP ==Y AP, @
niz

b TPONIERATRICAIESEMIEREASURE ;. FP 9 EHR TNy IR A ORE A B, PN DR RR TR 2K
MIEREAKCR; AP R PIHERGE; n 20 H AP ONES | FSRIERAI T AP {H; mAP@O.5 Al
BRI HE S FOSHE 2 [ S AR KT 8055 T 0.5 I BT 2R L

4.4. BFEELSELE

AT P B6AIE DCD-YOLO #5284 [y S 3k 14, K it A 8 5 SSD L Faster R-CNN. YOLOV5s. YOLOvSN.
YOLOVS LA K YOLO11n F1 YOLO11s HIATI FEATXT L, 7 GC10-det Fm4E L Al 2 MRS IR R
BRI, WE TR EANSEE, SRS RNE LSz ing 2 s,
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Table 2. Comparison experiments of different detection networks
2 2. PRI LS X b Se 36

Model P/% R/% mAP@0.5/% Params/M
SSD 62.8 62.4 64.1 24.4
Faster RCNN 59.8 63.6 62.7 136.8
YOLOv5s 61.5 63.4 64.2 46.2
YOLOv8n 68.2 59.4 63.3 3.01
YOLOv8s 734 60.0 64.5 111
YOLO11n 64.7 61.0 63.6 2.58
YOLO11s 63.2 63.3 63.6 9.42
ours 66.4 63.8 66.9 3.07

M# 2 0] 1, DCD-YOLO 7E & WOk e b B30 T H A, H mAP@0.5 F5 474 SSD.YOLOV5s,
YOLOvV8n. YOLOv8s. YOLOv1ln 1 YOLOv1ls 3 Jil#&m 2.8%. 2.7%. 3.6%. 2.4%. 3.3%F! 3.3%.
YOLOVSN [REHY [ HER 2 B SRS 7= T DCD-YOLO, {HIL A MR AN T IRATHAAS . J@id kA
P 26 LG S50 3 M AT T, DCD-YOLO W48 R 25 A VERE Bl MY e L sk DA K R ik A, 789y
PRI T AR SO AR B B L F 56 BB R T S B s AT 55

4.5. JHRASELE K 34

AT RN O S B A, LA YOLOV11n JN3E4R7E GCL0-DET s kit 7 4H it
SEU, ] P Ry AP Al mAP@O0.5 1F i BRI M RE TR AR, S2I6 K Al — 250 W 48 A B3R, T4
fib s ag 4k U EE 3 s

Table 3. Ablation experiment results
7 3. HRLLIGER

Model ABC P R MAP@50 AP%

% % % Pu Wl Cr WS Os Ss In Rp Cr Wf
M1  x x x 647 610 63.6 938 784 930 805 66.6 575 258 204 583 613
M2 V x x 624 639 64.1 946 882 943 822 641 626 244 232 458 615
M3 x v x 682 603 65.1 959 87.8 943 792 691 597 26 304 448 636
M4  x x v 702 620 64.5 931 864 933 781 70.0 534 269 249 512 67.0
M5 Vv x 652 613 63.5 944 866 957 798 60.6 56.1 221 194 600 586
M6 V x v 685 59.0 64.5 937 849 952 80.6 652 60.6 289 174 557 621
M7  x v v 619 66.0 64.1 947 897 961 784 67.0 537 269 73 599 651
M8 VvV v 664 638 66.9 954 884 959 753 709 535 226 41.1 599 653

FE: ONRERITEER: NS IR A A -

% 3t M1 AR ZATAT ek LR A5 R YOLOVIAn, ZA5A R Rp i AP &1, Pu I AP i, #£H
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Figure 11. Comparison of detection heatmaps before and after improvement. (a) (d) (g) Original images; (b) (e) (h) Baseline
heatmaps; (c) (f) (i) Ours heatmaps
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Figure 12. Visualization of detection results
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