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Abstract

In accelerator neutron source equipment inspection scenarios, the complex structural environment,
diverse equipment types, and frequent occlusion pose significant challenges to existing object de-
tection methods, leading to insufficient detection accuracy and stability. To address these issues,
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this paper proposes an improved YOLOv10-based device detection algorithm for complex scenes,
termed ECS-YOLO. First, the EffectiveSE attention mechanism is introduced in the feature extraction
stage to adaptively recalibrate channel features, thereby enhancing the representation of critical
device features. Second, a C2f_ RFAConv module is designed by embedding the RFA attention mech-
anism into the C2f structure, which improves multi-scale feature extraction and perception capa-
bility without significantly increasing computational overhead. Finally, the SIoU loss function is in-
corporated to constrain bounding box regression from multiple aspects, including distance, angle,
and shape matching, further improving localization accuracy. Experimental results demonstrate
that, compared with the baseline model, ECS-YOLO achieves improvements of 3.7%, 3.5%, and 4.8%
in mAP@50, Precision, and Recall, respectively.

Keywords

YOLOv10, Complex Scenes, Device Detection, EffectiveSE, SloU

Copyright © 2026 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

1. 5|8

Fiti 5 B U IR T BRI W R e, Tl R 1% 3R 7T (Boron Neutron Capture Therapy, BNCT){E N —
P BORS T TBOT B, PR 6T e e 20 R ) e B R R T 32 1)) 32 00 R i@ [ B AR I
TN, R I RAZ IS, M SIS IR A 2R R R . Hodr, I 2% R URAE A BNCT
RGBT 7, HIBITIRESEEXRRINAT SN Lt S5iett. EEbrpy Y, miEss+H7
PRI TAETEME S WASENIEE, M IETRE. foe 47 5 8k BAA SE 5 E
SR, ARG N Tk 7y sSRAEROR . HERME e — B T e B AR, THAEERY S TS H
PURAT SR A . D, WG N — i [m) B2 44 IR B 1) 8 B ALV A A v, DA B aker A 7 SR
ARSI R 8 FEHEIRED

RN T, ¥REZES NG YOLOvSn ML), daREE T 52 RER RS
G, ARERT T AR S TR E BARIRIIRE B2 RERFRV[2]557E YOLO11 HEZLEEA Aot X imih 2 k37
soNEHARRIEEAT T i, SRR 7RI AR /N B AR REGNEE 7. B DI B A s s s
HCRRTF I, AR EKB S S AN FE B SIS ERNE], $Em T RIRE R 4 TR R Bkl 4
Pettko dbAh, SEHI[4)5HT YOLOVIO X ARERBIR TS 3047 1 o0, 30uF 7% RV AE Z 304
Yy atrh i aE A PE s BEORHE[ 54542 i PCSED-YOLO 7E15 R E % H bk AT 55 BUS T B 3408

g LRI, REMA AR5 B A HS 7 —edt g, (B7E Sk BRI 5 A7 EA
fBo BT E A&7 5, AT YOLOVIOn SRS EE My gh ATt — DAk, AR TFHERITE & 430455
T SR S S F A
2. YOLOv10n B E

YOLO ZA G5 L s R IR B A S B 5k, O B AR LS A3 212 M [6]. HiEE
KEHBATFIE ) YOLOV10 [7]42 247 B A AERVE R S B H bRk il A 2 — o i AE YOLOVS [8] 54l
ghER PAT T 208G, 5INT PSA. SCDown LA C2fCIB 5A5idR, LIS SmRFE KK BE 11 FI 28 300%
B 45 I A Y BRAEAE AT LU AR 8, YOLOV10 SR — S0k I SURE A 7 Be S ms, B 1 B K AE 1

DOI: 10.12677/csa.2026.161024 296 T LR 58


https://doi.org/10.12677/csa.2026.161024
http://creativecommons.org/licenses/by/4.0/

PURV ISR

B, NIRRT HERE A . FIRS, 85I N E A 2SR IR 456 2 RDmE R I N SRR o, g —
AT TR (R A T

BEXI IR 28 B AT 55, ASCER Y T — PP T2t YOLOVI0 BIEE SR B A R vk, LRk )
A5 1 R, DL YOLOV10 MR, S ERAES I BE 5| N EffectiveSE [9]7E & LA, X
TRIERFAE AT B SN EARE, DA SR N 24 6] S0 BV A R I RE RS T RS B Kk, Wit
C2f RFAConv [10]#5H, ¥ RFA JER IHLHIN C2f Sk, 78 (R i i A R 1 1 [FD A S TH AR 42
W Re I 2 R HARRAIRE 7. iea, TERURBRBOTET SN SloU [Tk %, MBEES. i1 B RRIR
VU T 55 22 A4 1 FAE [ A EAT 2001, AT ik — D4R AR U TE 5 R ) 5 I E DL RG S -

(K=1, s=1) (K=3,5=2, p=1)

"I Conv H Conv |—>

SCDown
(K=1,5=1) XN C2fCIB (K=1,5=1)

——
—" Conv ‘AP{ Split ‘—»‘ CIB }—»‘ CIB }—»‘ Concat ‘—»‘ Conv ‘

C2f RFA l |
Conv —>’ Concat }—P{ c2f I~ >| One-to-one Head ‘

.

‘ Conv | » One-to-many Head

Upsample

—b{ One-to-one Head ‘
SPPF
C2fCIB » One-to-many Head
PSA
Neck Head

Backbone

4>| One-to-one Head l

»

One-to-many Head

SCDown

Figure 1. Architecture of the ECS-YOLO network
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Figure 2. Spatial feature transformation
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Figure 3. Architecture of the RFAConv convolution module
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Figure 4. Schematic diagram of SIoU loss computation
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Figure 5. Visualization of detection results
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