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Abstract

In order to solve the problem that the existing false news detection methods only rely on semantic
features and ignore emotional features, which leads to the low accuracy of complex content detec-
tion, a sentient-enhanced large language model for false news detection (SELLM-FND) based on
emotional enhancement mechanism is proposed. This method firstly analyzes the news text to ex-
tract emotional features, and then completes the detection by fusing the text and emotional features
through the large language model. Experiments on WELFake_Dataset_Edited data set show that the
accuracy of this method is 0.929, and the detection performance is better than the previous text-
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based false news detection methods.
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1. 5|

FEHCF AR, A5 BARBRE T E5E, B45 S5 A TGRS BI0RIE . ELIBE W A B A 1945 5
RERE IR L%, B SFEURMEME BY H1]. EBRERRSARER, SIAGEEIIFEESRT .
RS R, R SR T BB R A i, JER AL TR ST AR R
S0l AR 1) BV A1k 7 ) e T 2] o

H S P WL 35 27 TR AR 00 R AT 1) (LA TRTRR R AR T P A ) 3X — AR 5 AR R, ST B AT 4R
ZMoriE, BERMAEN LINEP R R B, B 1k 0 A A iR E SR ) R S A B
ZEH[3]. RAEAMAFAE 5B IELEE, DA HEFTRBRIS “HET AR %7 “H TR
ML 5 “HFHAE BRSO 7 =241, BT A A AR RE BT T A 2 i UAORURT [ SCA
(B A 22 AR P 25) B £ Ja P Wi I B S R 7

BT “OBNIE” DASCAR N R, 38T ST P 25 1) R AR T RSl 2 11 250 g AR I A ) 45 1 %
OHEARTTMZ —, ZRITELFRBEG . S AL B R S A E R, RN SCAR A G 3 ]
EACRHE, 8 LA 2] R FE A ST AR S B R AR I 14 1 3R

BET A P 1 R ABCHT )R ) R O R ME R MO BRI SRR NS IRRFAE, B amialilgine . Aikghife, &
el O S BAERAE, DARGE B BRSO, EBE LIS IR IE[S]-[8]. AT EZ RET
VB SURFIE, #0280 T 15 R AELE R BORT A I i AR . MO MRS, O Il d i WOk 2
ARGRETE G5 AN RN T AL RE S A, A I R ABORT T Rod AL 3R (K L0 B) /g BE Tk, AR
HH R 1 O SR AL 1 1 RS 5 R A R AR A 7 v, BRRAR R ERAI SR S RO B, eIk
F TR 1) TSR, PR FH 3 0 A5 2R A [ 5 4R 18 3 I Jbd:, 85 R R s S a1k
FRIE L (Low-Rank Adaptation, LORA) Y S BE (i HH T DU et SCA 1 ORI AR 2 ko il K AT I8 (9 i o0
oy e TEHEI B, 1%V S0 B I R SCAR AT A5 188 20 AT SR BUHE o (1 15 AR AIE , PGS B R 1 17 S
AEANHT [ SCAR AT BEG SAR I, SCHTE ks B2 114 R O RSl o
2. HXT1E
2.1, BT AN ERHEEN

BT SCAR 1) R BRI IR ARG DU 2 VR 00 (e e S e oG TR, RERIER TR : 1) VRN EE
BRI KR AECHT 5] 2) VRIS BEVEAL o D28 AL RS =X 20 B S LA ARSI 7 V2 i) 19 5 T B [9] [10],  ERZ S
AR Ve RS0 o (1 BB ES Ab AR

H ATZ A0 A 5 2 W 70 R Philogene %5 A\ K FH XX ) #1012 (BILSTM) R AL T Fe ki M 90 o s )
[11]; Hrishikesh Telang % Nizf LSTM ARFs B —— [ 1# 9534 B 0 (GRU) 58 B AT %5 [12]; Ye-Chan
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Ahn ZE 35 UK O ZREEAY BERT N TiZ4E5%, ilid WordPiece #84xf Hrdls 14T 701, 4l Jm 4521
REMECHT R AT [6] . Bibek <58 NIRARIG SR ZERFME, KW m i &l 70 o “RRAR 7 “rhar” “Jmk” =
K, ¥ RE LIAR Bl S JF 52 Rl & 15 O M A U U734 [7]: - Chunyuan Yuan 58 AFIFI T 25 BERT A
KPP HEAT I8 B AR e, SRS AR VE I [8]; Mahmood %5 AKX BERT 5 47 &b 34T 18] b f 5 1F
3, VURTHE U PE e ) XA I HERG 2 [13]. 25T, LL BERT AL HITNE R Z SIS T sAh, EH
TR RREAL B A N T35 T SO R AR AU, G Beizhe Hu 55 AR RS RL IR AR i 70 A2 1 o3 M AR 4
LGB 14], Ke Jing 55 N U ELRE A B A AU RO HHE B g 0 S SO o, 3 1T 58 ORI [15]

ik LA BT 20, AT BLE AR R T 2 B AR T SO K B AR (i VIR L AR ) I 2
B BT R EER A R - oL - YR =00 2805, R RE TS 0 42 SR A7 IR A A
PERERIBRTHET,  HL8Z X5 AR AL A FI B R BE 18 7 o

2.2. YBRIETRR S H

T BT AR O A 35 R R SOAR TS IO MR 20 Dy “ R “rpar” “iitl” =2K[16]. Rl 4%
R A A B, B S E IR I IR AU ORIE LR SR T, HLIREIRIR R R, AMURR R SCAS 1 Jkfit
A (I T ST, 30 ik — 2D R 5 R i 1R R LA T B 1, B AL JRE 1 SRR AT

HEZWTOTT FEAEPIIT: 1) WOCRYERE A, A5 3 BOUR R A2 AN, 20380 S LA R 1
AU, 1207 B E AR BT 2) WIERCHEAERZ A, R 15 b kS i e Ak 15 SR AR
B, NGO AE RN =RY R 20, 1207 RN 2 bR O 25 [17]

FESCA G RALSS o, ARG BT HOR 2 N, A O AR T =70 RS 07 1%,
B B TARTFSCA > FUERA FE[18]-[20] o S RLIRIN , FESE AT AT X0 R ABCHT [ Ar Il AR FE S ey, T 723 A B
KN =00 BAG BI W7 1S DU A5 MG R, RES 0 5 1R v R BT I AL DU A BT R [ 7] 8] F& T LA AL
LERTHERN, A RERE DRI IR TR A B RSB, RN A A R ISR TR A R (R [H] H 1) 23 A s
LB AR s R3S R ARG T A 0 Bl o 4 B BT A SEARAR AT

23. KBEEES5RA

K5 5% 7 (Large Language Models, LLM) &3 F IR % S HioR . DU SCAR B RN T8 6E
R, LR AR SR SIE S, RN H e R AR . R K RS IE T RE 1 [21]
HEAMNBARI Y. A B KRR IS BERE 7, FIR B2 SO B 5 5 2, i B driedt
L RA&AEEMAMBSISIEREE)), BIEAFM AT P IHERS, PRI S U1 B A E BL
A AT ALGERL, AT AR SR, 2RI BRI R 45 R B TR B, RS AT S p A S
TRIE[22]. BT VA B, S PIAFE REBYAE L35 RE AU A DI E N SCA R AR 55 p AR 2 1T 2 R AT .

TR AR F R A 8 AT 55 B B — DI, RIS H R R B AR TR, &K
T ANE I 7E ) Tk GBI AR . ARG, KB BAE KR AT 55 Th R I 2 0 T I APIR S

BEXTREECET AT AL S5, LLM EZER0RH 5% 7 N8 2R CER TINAER N E 280 5%
Hw %Mo (Parameter-Efficient Fine-Tuning, PEFT, (%A D854 . MK T 4S500H, PEFT o]
MG TR IHE 0.5%~1% LB S %, AABHET R, BRSO B m . DA ARAR. PEf b
AR 34 23]

2.4. BT RN ERIEE
oA TREAEMBUCE S e B ARG EEAEH . 20kl Wt ie & 18 SN . iR
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Wi S AR AR S L R BTMEANAERAVE . $ROR TR W RO S8, w5 NI 55 T a2 [ 24].

2021 4, Reynolds F1 McDonell & {X7E {Prompt programming for large language models: Beyond the
few-shot paradigm) =2 H T #2517 TAERHE&[25]. L ZEMKRE, AR TRENECS R E
H T Z R AR: Kojima 25 A3 H B FEA YR (CoT), @il 51 TR IZ 0 e B 5L T 5 2T 45 K B[ 26]
Yao FE AP Je th M4ERH(ToT) MIHERE 51Tl (ReAct), 4 Al 7 2 2 M RIMTE 55 AR - 173 R4 552 [27]
[28]; Besta &5 A\f2 ALK (GoT), PAEIZE#Fn & 2 4 B A0 1 9 AT R [29]: Zhou &8 A\ $2 H H 3R
T.FE(APE), ScElEG 411 B 34 S 07k [30]; Lewis 2 A HE G R IG58 42 B(RAG), Id 4R AR FE 3R TH
[ A M S, X S R I R HE B 7 18] AR SOA RN VS & B e 1A% O F B [31]

2.5. ETERIGEN BRI KIE S E B EEITEG N

BT I AT ARSI T i o i R I R B A D 1P AL, A SR ARG B 155 [k A 2 FH A R AR [ A
T, G KB F B SRR RERE, Bt 1 NI I R SRATL A 0 P T R R AR I PR SRR

3. KXk
3.1 {E5HH#IR

AT R AT 55 58 U — N AT %, 4h i — ANETRSCAE B T, gt T 5 2y,
BT B A F, B y = F(T) o 7 el R, A SR F B B SOA T HEAT RS AMT, H:
PR IR AT R S SUN RS 020 TSI I 45 S B Emo, B Emo =g, (T) o [R5 40 BT 45 518
GG R IR 2 —, BB — N R f TR

y=1(T)=1,(T.9,(T)) )

32. HAGH
TR

RRUSIE2

TRRMHIEHEEY

TERUFIE3

B

XAEHR,

Figure 1. Sentiment-enhanced LLM for fake news detection model
B 1. ETBRAERBEIRKES REE R E M EE

PR b — T TR B M, AT it 17— T R s AL AR 0 1 5 AR A R BT e e T i
HARAELUR JUAMESR: (1) 2T BERT MR HTILER; (2) FIFIKIE 5 L 45 8 [ SCAS A U
o BCRFE (4 REABOHT [ 70 s (3) ARG Utk nl& 1.
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BEF 1 I s LA (0 K 5 R AR R A [ RS g 92 AR e R SR AR AR L . SO U 5 R R
A R EREE R, 175 S 3 AT AL B A BRI T SOAS FR R JBORFAIE TP A 15 ORI 5 18 S i 4 SR AT SOAR &

Ji BINRRIERL G, 20 o SRAR 2 S Bt I W 4

3.2.1. 1EERE

AL ) SELLM-FND A58, 5 5 55 S0 7 1] 1R SCASBEAT 18 88 20 BT SR U HG A PR AR JERRAE 1 /8%
SYNTER G BERT BLZUAE Ay 2Eat. i@ BERT AL T XA £ 2 Transformer fmtd s 2efytb g, Hp
BERT-Base i I 2L & 12 Nomidas, AL H 8 JZ41k: 4 )22 3k HiE®R J1)Z(multi-head self-
attention layers)fll 4 JZ i3 % 4% )= (feed forward layers). & F-XU[n] Transformer 4844, @it H == JIHLHRE
8 [ B OV )~ FR R S SCH BT A Bae], ARl bR SCRBURR R ] RN

1T Transformer () HyER LM, BERT A id £ # 43d 1) 4m AN AN R IE B 2 A N fAE 55 . X1
TR L —H 2 X R eSS, BERT GEARYE BB ST )& AR a1 KoK, HER
(X 73 A% it ]

ASCHE XS TG BERT BEATHOM, SRS A& e /1K) BERTemotions #7 . Dy fi i 4
R T BRATAX B HEAT B T ) 1R SR8 AT A2, A SO sl P AR I SR (UL 4.1 )0 Hodk— I g, (0
REME IR — A IR, It ph ook 7 SR 1) 2 1 ) 1 SR e it o DA E 78 70 PR UL SR AR 03t ) £ [ B gk 2 >
BRI, JRATE— AR AY ,  As HAN Ji  A75 SR 1) i i B ) = A7 S T 2L RS 155 J )

32.2. WEEMT

NSCHEARTCHETE, SR ity B 4R 75 B 2[RI B 2 5 ROPR 25 5 ) LSRR 287 1 v i A T
FOR, SR, — 5, MR BOHT S AT 55 BB SR AR AR OORTE “ SRR R . — 0 b R Bl B R 15 IR 25
B Z ARLE T R E (I BT R B ) Jy— 5, O AT T R AR R S I R AR T
HIIR SR [ SCAS B SR ARAE , ToVk EL AL 2 T TR TR P S Sk ™ R s e i H AR

B A Bl S AN 2 A ST TE H AR T8, A SR R AE IR e gt ol S AT — o L 5 5K,
RS — 8 =, IR R T P 4 /e —F 2 18], BARRAE D A= B, XPIZRER
BERT #EATRH, AR EVrRES : 00, STR0R s MRy H R EE (0 4.1 1) IR i
PREs B =00, R SE B EARE R B B S, RS T A 0 e OT I 45

3.2.3. KRR KA

Wael Etaiwi %5 A\ Fb4 T GPT-4 1 DeepSeek-V3 7 3 @ 73 A4 ALk F G ST, &I DeepSeek 7Eif
MRS EAR T GPT-4[32], 444t GPT-4, DeepSeek-R1 1 DeepSeek-V3 [#5E iR (N 1),
ARSI F 2435 FH 48T 1) 70 AT 55 T )5 1) DeepSeek-R1 1578 (DeepSeek-R1-Distill-Qwen-7B-News-Classifier)
VERFERIBAY (LT DUE AR AYHE) [33], IR CL4 B &0 [0 SCAR 0 R ARt RE 77, @i it — Do
AT LAEAT R ARCET IR I T A, A5 L REA 12 52 SCAS PN 2 AR U ) (R0 N, 00 7 P S e T o

Table 1. Comparison of DeepSeek-V3, DeepSeek-R1, and GPT-4 models
%% 1. DeepSeek-V3, DeepSeek-R1, GPT-4 #=&I%fLL

panea’d;cs DeepSeek-V3 DeepSeek-R1 GPT-4
1%\2%” ’ w e 2%” i %é‘ .
P 6710 1255 SHHTHE 100~300 12, WKL) 1.8 i1

B token $iE 370 14544 (AT Mk AEN)
FrUENR 8k tokens, GPT-4
8k~16k tokens (KX A #iAE JAR)  Turbo SZ#F 128k tokens

(i A B [l 40

HEM 16k~32k tokens (F] F25E

EFXEERE i k. 2B )
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ﬁi$%ﬁ$ﬁsmw%,&iﬁﬁﬁ%ﬁ% RO 20%+, S RS Brk FE S 128k E R 10%~15%,
° &S KB, KCAMERAWNR eSS TarEReiie, ok
g(%l%f;g%u 84.6% 65% 76%

S PR I 2% B R BT RE MR SRR O B AR S, IR 2 v RO AL L R T 3 O VR R A Rk . AT
Edward Hu &¢ A\ [28] R LR W, ERBLERCHRE NI AR50, TOIZRIE SRR “ AAELERERLR” /)
Rt ——RME B R4 S E S H L, BARUDRE R S T RIZBERE W, e R™, @R AN Bz
B Wo (FR4), TR SINIRBR M RAERE A e RY (BENLEBTHI4A1L)FI B e R™ (A1), BUEEHIE

RN
W, + AW =W, + BA )
A JRAGHT AL SRR D h = Wox TSI\ LoRA Ji f i [r) A% 76 ) 0= -
h = Wyx + AWX = W,x + BAX 3

R AL (LORA)IX — i R 1 e SR M BE AN 2 5l AFEFLAEIR,, WA SYE MM N T, R EER
BRI pe . B, EVENRS BN, LoRA T de M (46 KR40 S8, SEBLPISE AT 55 1)
#e[34].

3.2.4. ETFH/RIRARIEEIGEMEH

AR SRV IS BRI 1) 2 3 T B2 i) AR (1 G AL, A% O I8 I R AN HE 2 SE LG R AIE
5 PR 3 SCRRAE P s R, 5] 5 SRS 2 SR A 5 IR SO SCIA RIS 2, b B AR el A 00 1 3 7
ML T OB B R R 2 4 0, (G g 4 T A B 8 ot 17 B AIE (R 4L A 77, 5 LoRA RCRTE BL
7], $ETHRC G

S bR TR 25 SR 5 R BT R AT 45 B 75 SR, AR SO FH B A R 45637 11 SCA S LA IR AR
IR T N R BCH R B SCA: [DOARNZR]: QR B [T 1, BEASRE 1], [1HERSM 2,
BGE 2] BB 3, BIERH 3] fh: AwEdi. ”

4. K
4.1. BiEsE

4.1.1. BIEE

ARSI sem_eval_2018 i 4L I 54 B AT A £ [35], { A WELFake_Dataset_Edited ##5 51
DR B H AR AR AT A AR AN [36]

Affect in Tweets (F 3¢ o 55 I BE 4 ) /& SemEval-2018_Task 1 mffdi R4, %098 S Hl ek
GRS EE S ITE, B8 TARTAS WA FEdRE, AT R IR ISR BEST
e, —ILAE 22,458 % HdE, Hd 12,677 %&IZ4E, 2150 KIIELE, 7631 KALE, fF—4EdE
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WA N: hE—FHMESC, FIWIE T 11 MRpe B 1 Frel 2 f(Z %02, Bl — 40T FI bR
HZMIERK), TR BRI BB G

WELFake_Dataset_Edited &0 7F Hugging Face V- & L1 — N SCA 0 B BUESE, OB 2
FINGAEAS BB AT AHOSHIMLAS S IR . L dE 72,133 245508, JLrh 35,024 2% BLSIHT ]
37,109 ZEEHT I . RAAEHR KRR IIGE SRIFE, B FEURNEN: 4 E — 20 HbR 8 G o
HESCHREH 7 9 null), AR 5 0 R ABHT [, an SR 2 U label #5450 1.

4.1.2. RGN

TEXT SIS e M AR B2 50 B BRI Pl -, F%F % WELFake_Dataset_Edited 4 &£t — 5 I
JEIr 5 ik kb, BARRRR S AW

1) BARENIKRYIS: ¥ WELFake_Dataset_Edited 3 44% 7:3 (LX) 4 A5y, Horh 70%1EH
WEIBAFEE, FT MG S S E0RI; 30%/E NMsmiliteE, T B & miEBRZ Lk fE .

2) B U S5y o EIR D IR B USR58 UE SR SN O R 5E ) BERTemotions £
B, AR B B SR C AR RS, AR RS BT SO . SRR A B AR A R B A
#4479 NewsEmotions. BfiJ5, #4 NewsEmotions ##584% 6:1 I LU PRk R 73 AU 5B S 30 E4R, LOERD
S B8 BRI IR AR B P R 5 90 0E 75 5K

4.2. AT

AR SCIIBE I SR B 25 B R

1) FIH Affect in Tweets Z(#5 5 (W, 4.1)% BERT #AUBEATROM IR, THUIZRA BERT B SUA G i
YEFE )y 768 4E, SV HE batch size Jy 16, RISk E h Oy 12, YIZREEIKON 3 #eIFR I AT L3RI LA
B bR LA . fE A ReLU BuE ks, R 7 HRBIBMERSE, £ Adam 1EAMAES, HR0RE 1)
BERLE Ny SELLM-FND [ 40 Hr i e o

2) FHl SELLM-FND 1% B/ ik bdit & 4b ¥ WELFake Dataset_Edited $E 8 (N, 4.1)3K 1500 & 15 Bbr
ZHIBHESE NewsEmotions. ZEHEER & = AMZ LT B B SCARGRE + ). HEREES (2
) FLIRMERRAE, AR — DRl R IERARRAE R R BRI RS AR I 2R At T OB S A

3) i F A 15 R R 2 1 B 25 NewsEmotions i 2L REFE (I, 3.2.2), AT KH LoRA Tt
(LORA I1Fk N 16, 4iJstIR 10 32, SHE B &> 0.05), SEX 1% E batchsize 4 8, H A& RA 4 /bt
VBB TS 5 BB — O RS 8, 1 kB h N 32 Sk, WIEREETRN 3 583K R A5 10 S s DB 145
R E . fEH ReLU Bud k3, A THRBIBARRMSE, A Adam 1E RS . i 5 s ay AR
v SE-FND #6 il #4k

4.3. FELSCIREER

FAVEARE 4.2 AT (SELLM-FND)EAT MIZRANTH0 o FFx0] B AZ A A 5 30AT 1) R A 1 s
Jivk, AR HET BERT BALGE A REARCH MRS MR AL (6] FH AR 51N 1 15 AR 25 1 1) DeepSeek-R1
RAFAI[32] =T HDRL A7 186 A0 A SR A T8I I AL I (R B2 FOREAL [37] 24 G 1 Ik o3 #7322 1) R ABGI
[E AT IR Y EmoSentBERT [7], Z& T LLM-GAN &7~ HE 42 ] R i 08T [ A il A 4 LLM-GAN [38].
A BB 45 WELFake_Dataset_Edited s 45 (I i 4E 5545

RSP FEAR A UERRR . SR, FEIR LK FLFE 8. R 2 R A W0 0 P 26 6 om0 3 el A
FLEHT 9 2 [ AR I Febs, FUFRE B2 A B 28 DA K FL 8B BCHT RS I P2 e iR o v e, 7R
AT A, X PSR ARG ST, REE A T M S R A ) SE R AR
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Table 2. Comparison of experimental results of various detection methods
= 2. BRGNS ERNSLIGERITEL

o kit R Accuracy Precision FRE Fl1igH
FF BERT FU4li SCA RO A, {NIET

BERT_detection s Ssbfrieil, & Fox Mo piimmm e, O oo 0857 08330845
FOREAL %giggiﬁﬁﬂﬁﬁ HRAE AR B 1 0.700 0.788 0.839  0.813
EmoSentBERT SEE TG R AL AR CAERE I TRI GRS 0.886 0.912 0912 00912
LLM-GAN BTSRRI 1) R ABHT T A KA Y 0.916 0.922 0913  0.917
DeepSeek-R1_detection 7EREREHIAL AT B HAR 1R AR A 0.925 0.943 0.943  0.943
SELLM-FND AR SV e P AR Y 0.929 0.952 0.944  0.948

Xt b &5 A4 2 iz, AN 35 2ikar 4% S8 A 1) FORE AL #5784 5V 3T BERT i i) BERT _detection
BRI R e 22, HHED JER (8] e 3 S MM B — 4k 2R3 AIE (FOREAL % IERFAiE, BERT _detection 4K
B SURHE), FHERIEMATHMHA R, SFEACIERESZ . M2, mA 15 BYE R 518 YEE SURHE 1)
EmoSentBERT #5574, ik 2 & A0 T iR W2 s gk FE AR, I0AIE 1 22 4k FE R A il o4 TH R BT IR G
DUPERE A 21 -

BEAL, R 51N AR B 1 5 25 AR 575 (LLM-GAN 5 DeepSeek-R1_detection), :AEXITL T1E 4T
WGBSR, Horb, TR ) LLM-GAN AR, ARk A7 (38 AR 4 30 5 6 Fi I 2 34,
SEPLT 0.916 FERAZR, (HR BT BRHE, FVERETI S T 5 N5 B 58 AL ; DeepSeek-R1_detection
R (T RE Al B A DeepSeek-R1-Distill-Qwen-7B-News-Classifier %1 5% 5 15 5 & &6 4% 55 33F — 25 i i fr
13 BRGNS i, (B AR T FOREAL. BERT _detection 5 EmoSentBERT = 254171,
IXARELH T A RAR A 7R SCHR AR AT 5538 e 7 THI F0 R AR 3

ALV SELLM-FND #% 7F DeepSeek-R1_detection fFEA: 340 1 1% I ag ML, HAS I 1k RE
TEFTE VIS EAR R R IR £, S IUEARS T H o LU Y, HAERSES FL I8 BB IR .
X, SELLM-FND 58 7E i A8 47 Fe A AT 55 Hp L 4% SRS WE Y TN R ) 5 SE S i 25 A e e, RIS 56
TR T 4 BT A 0T T KRR e AR P A W 28 R (R AR AR

SCHGEE UL, B — (01 S AR SR A RE A I AR A LU T Re 8 45 G P R 48 BE RS R B N 8 )
TP — ) 5 15 T P RO B R RSt V8 5 T 25 11 R Rl BERT REAUAS I, OB fry T S il s (e
N S Ll P TR SRR B TR A, 15 B s L 1) 1 DK 5 R B R B A 532, TR e A L
SRS 7 A P 17 T SR ATL 1) P R ASE 2 1 BR R B 4

4.4. HRESELE

NBAIE SELLM-FND AR 5 A% Co B xR ABCHT [ ASr U 1 RE (O DTk B, I A FI BRI/ PR AN (B, A
WHFCBTE T 2 AR SRS . FITA S04 T WELFake_Dataset_Edited Zdf 42 MK SE T, 5 I kR 26
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Table 3. Comparison of ablation experiment results
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