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Abstract

Large Language Models (LLMs) have achieved remarkable progress in Natural Language Processing,
yet effectively adapting them to Multimodal Sentiment Analysis (MSA) tasks remains a significant
challenge. The core difficulty lies in bridging the gap between heterogeneous modal features (e.g.,
visual, acoustic) and the semantic space of pre-trained text models. Existing approaches often rely
on complex deep fusion networks or expensive full fine-tuning, failing to fully leverage the reason-
ing and generalization capabilities of LLMs. To address this, we propose a lightweight Cross-Modal
Pseudo-Token Adapter (CMPTA). Instead of disrupting the original parameters of the LLM, this method
employs an efficient attention mechanism to transform non-textual modal features into “Pseudo-To-
kens” understandable by the LLM. These tokens are then injected into the text input sequence as
Soft Prompts, achieving deep alignment between multimodal information and textual semantics.
Furthermore, we systematically investigate the impact of the number of pseudo-tokens on semantic
alignment. Experimental results demonstrate that CMPTA effectively stimulates the multimodal
sentiment understanding capability of LLMs, outperforming state-of-the-art baselines, thereby vali-
dating the effectiveness and generalization ability of the framework.
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Figure 1. Cross-modal Pseudo-Token adapter framework
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3.1. CMPTA BY4RH58

3.1.1. XEBMAE

SCARHRN JZ 2 T G508 5 A5 Hp ot B IR 5 LS 380528 8 v 2 ) () GBS o o T N 1) SCAR T 37
X = (3,5, ,x, ) FP A x, #HRIAR AP IIRD], HNZE LAY N d B EROR, HRE RS
e R R E S AERHIE, SRR TR AR

WIS SRR E e RV, Sorh V| iR KA d AHONERE, N ER A T R

h =E[x])i=1-T (D
Hort Ex, | B SN RE RS x TR . o TREE AR x e R®T, HAS R HN -
H=Embed(X)eRBXTXd 2)

3.1.2. FFF4HEXSTE

EIRTIZRRIE 5 B A By B a KK P AR AR 77, AR 546 A 5 A0 5 SR AE 5 41 AR A A7 TE R
BER . WA KL NP . EE M LLM 2 S8 E T S0 D E B 58, PR

BRI, RATTEE LLM ZRT5IN T — N gisgitl, IR RAXUA LSTM 1E v 2 seBE, HTxHE
SCABEAS R AT 7 R 46 5 20t . @i gk — 0 s Al sess, xFEe s m LSTM S5 XU LSTM 7R i b
PRI, LAAS BT AN [FI E) b SO 7 U AR P BE AU SR o R 21 ) SR A AR S R IE 2 B Dy B K 2%
1 BN SCRIR, EARE OSBRSS RIS, X5 T AR 5 A IIE B, ARS8
Jii I Token BE5E 3h . N FHIR R N:

X=(x1,~--,xT),xt € R 3)
XA LSTM [R5 5 [ AR 7 S sh 25748 40, Hofar .
ho=[ia] @

FLrbrl ) 5 /5 R BEBCR S EAMBIRED RIS KAEUBIR R, N JE ST 55 4R it 3 HR0E T RAE -
Nt BRI FOR PR, PHEERERUIRS 2 — MRS 53—
h, = LayerNorm (Wh, +b) (5)

oD BRAE IR 4 4 P R RIS, ERRAE A B mAs e, A B PR RS shak, 7RISR B A
Dropout, PABFAREFLE R . 5B T BA AR, a5 H B BOR i &M A ) B S K
LK A RGa BRI a2 B, I ORIERHE 7 5N B A 2508 XA B R, X345 4 B8 R 3% Hh Ak
HIATAR K RN, (A OREFREAE X 57 5 45 — 3k .

3.1.3. BHR7S{A Token BEECEF

N T RE RIS B A5 T Z5 RIS 5 R AE X2 () 2 (B s, FRATE T T — MBS
Token IERC#H(CMPT Adapter). AN[A TG 7 Wit B ARFIRER A ML, ARBHREE O Bis 2 7Y
ML, B AR SCABE SRR R L D LLM B B A Y #5275 (Soft Prompts).

HHTFAEEPIMEE X 5 Y S HAFEF 5595908

X={x, 2 1Y ={p, o 0r ) (6)

Wk 2 R, IZERLER S HE ATE R A A e F AR A LLM (HERLRE 77, T i

DOI: 10.12677/csa.2026.161023 284 THEAURF 5 R


https://doi.org/10.12677/csa.2026.161023

Fhg %
W2 RERINH(MHA) BT HHE, S TERMMES X 5Y, BESES R E 8-
Attn(Qy, K,V ) = softmax(Qj/gX jVX (7)

He, X, Ye(T,V,4), X=Y, dARGEZLEERRAN, B, Ay HSCRBEER, X AERRE7 )R
B ARSI HAR R 1 He,, ¥ RS TS IS I DL HE, 120 FE AR N R
AiE 1) B4 7€ SR Token:

{tl,tz,vl,v2,al,a2} 8)

PSR E Z . Z A Transformer BSF S8, H T 1958 RURAE S TERE.

V, T A, T A, V,

FEL PR [FEE FE)| (FEE FRR

Figure 2. Cross-modal Pseudo-Token adapter
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4.1. BIE&E

AT FAE I W1 ARSI R W a4 LIS IEREARUERE, 43528 SIMS-V2 5 MELD. 1% 1 fit
7N, SIMS-V2 RS RHE LS, FARBEWI B, B8R WS EM=MEEE, If
KNG SR bR, Re S AR RE 2 15 2548 4 . MELD WY B FARJH (Friends) 12 f1 (x5 5%,
FIRERBE A . A SRS, (AR 7 RE BRI, FOSERIOIE LT PSR EE
EE . HEARERR. P, BRI RA BAME, DA mvE A BRI pS g Sz A ae Dot 1]
FEHLAH
Table 1. Summary of the SIMS-V2 and MELD datasets
F 1. SIMS-V2 1 MELD ##E&M%TH1ER

BAEE Dataset)  YIZRE(Train) IGIF4E (Valid) TREE(Test) B3 (Total) &S (Language)

SIMS-V2 2722 647 1034 4403 Chinese

MELD 9989 1109 2610 13708 English

4.2. VN IEEF

A FEAR Y8 AT 55 M 20 B R T 46 %0 12 25 (MAE) 5 DAL F1 3 B (WED)/E N B YE FaFR. XK
FHE S Bom EARE B SE, T MAE {7 fE 5 B Sl 2 (R P 245 O 2, %) i AR AR 7 [m] )
T RGR R T AR ZE R . HoE UM

1 & .
MAE=—3'|y, -5, (10)
NS

Xof A% FH B I B AR E R 5., SR WF1 23 U WU AR A AN P 26 A T (R4 3 2B P
WF1 73 00 3% S E % I A B L

WF1= > w, -Fl_,w, = —2t (11)

C
j=1 n_i

MAE & T fm 22 BASE, 110 WF1 BEA AL BESE A A A A7 R W 22, 3 25 & RE 0 4= T VR4l 5%
TR 5 5 B U BT 25 BRI
4.3. SCHNGE

AL CMPTA RIS SCAR . A FIEZ AR AEVE TN, T T AN B, e EdEE 5 Ml
e AEEMMREE, IAEH TR B, I0AE S Tl 2Rk 72 Ho A 0 A AL () B B R 3
SRt gk FURBEARLE MR EE F R . BT A RO ZR A B & 7E — N 25 windows R 48 HI B4 5 1K
B, %A% GEFORCE RTX 4090 fF. BB IIZRESHINE 2 Fix:

c=1

Table 2. Experimental hyperparameters and prompt settings for the SIMS-V2 and MELD datasets
% 2. SIMS-V2 # MELD ¥EER SIS AR AR BT

S (Hyperparameter) H{E (Value)
AL P 1024
A AdamW
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B3k
EE Se—*
ERIREL 150 Epochs
LKA 16
7R 17 (Prompt)
BIELE (Dataset) 7 (Prompt)
BRSNS AT T, G E[—1.0, +1.01Z ) MR
SIMS-V2 e e oy
RIS
'Please recognize the emotion of the above multimodal content from the target set
MELD <neutral:0, surprise:1, fear:2, sadness:3, joy:4, disgust:5, anger:6>. Assistant: The
emotion is'

4.4. SRR

BATAE SIMS-V2 Al MELD X AN AR 3 AT 75858, BT A MSCIRIORAIE T IS BRIF4E
A A AR F 7 R 5y, 0T SIMS-V2 XA, TATHARAF KBTS, W Tabs T
YRFR 2, GRUNFE 3 Fr, BATITE MAE 528 0.308, S 00 106 b7k, B BIZE 15 I B A4 55 o,
X ARG B EAME AT INTE 5y, A U Hh AR R B 1 4R k. ST MELD 34, BAM
MRNE R IATSs, PPN TRAAIIARL F1 238, 45k 4 Fior, BARIT77: WL 23800 59.49, @il
Gk, RPBREE G 5 PR AR A ZHEE R, JFE MR ULTE N AR (A 50 75 5 Rk 1)
BN

SR A2 B R (STMS-V2) X 5 53 S (MELD) P SR ARe 14 22 572 I i ) Bt 4R _E 3G e 1271
B BRATTI 7 v B T (1 5 B AR 12 AL RE R R & 2k

Table 3. The results on the SIMS-V2 dataset
5% 3. 1 SIMS-V2 ERYSEIGZER

HiE MAE| Corr

LMF [24] 0.343 0.638
Self-MM [25] 0.335 0.640
MAG-BERT [26] 0.334 0.691
MSE-LLaMA2-7B [27] 0.382 0.553
CMPTA (Ours) 0.308 0.686

Table 4. The results on the MELD dataset
% 4. £ MELD ERISDIG4ER

i WF11
TFN [28] 57.74
MMGCN [29] 5831
GA2MIF [30] 58.94
CMPTA (Ours) 59.49
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PAIAE SIMS-V2 A MELD ##84E &, 70 A FRRRIEXS 552 B5REAS D Token i@ AL #5 A1l token 4=
RECE AT VIR AT, S5 5 K 6 Fias.

Table 5. Ablation results on SIMS-V2
2 5. #£ SIMS-V2 LHUHBSIR AR

I PR X 5 2= 1R ¥ Al

RERH MAE
T 0.308
5 0.412
LSTM %! MAE
LA 0.308
Hipa] 0.328
PSR Token &AL #8 1) 7H AL 72
s a H MAE
& 0.308
5 0.380

h token A BCHCER 1H R 52
K MAE
5 0313
6 0.308
7 0.309
8 0.311

Table 6. Ablation results on MELD
%% 6. £ MELD ERYERRSCIOLE R

I FP A HE XS 57 2 PR T 7T

e H MAE
& 59.49
i 41.19
LSTM %! MAE
LA 59.49
LG 53.89
PSR A Token &AL 38 1) 7H AL 71
RERH MAE
T 59.49
5 51.31

A token AE o E &2 I BT 7
Lo WF1
5 54.20
6 59.49
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4.5.1. FFFHEXFTRRERSR

N T AR M, RATIEARAE X SR B A B T Transformer M4mAg4%, REHET
Transformer WIS ERAEIR A5 BRI 0, (BLEARAES IR FH B, FHAE 7 FU A A B A &
AR, AT, XA LSTM BA E AR E, E/NFEARTE SIS G i E23]. A T i
R @ RN R, AR TAERS: 7 XU LSTM 1N FF 2, Wik 5 M 6 Fior, {Eff XU LSTM
B, BALYE SMIS-V2 Al MELD %4 F YRR A A [FIFR B 148 &

7E SMIS-V2 44 b, ML 5 a5, 4)3 I FRFEXS R 20, MAE 24 0.308, TMif5RR a1 Re B &
TREA 04120 X Uk BA 151 0 5 AR 5 AR AE A2 15 R [l VA P el B Aol P D 3 B 953 A BRARRAE 2 DL S Rk 1
JRAHOAZ B, FFAES BB AE BRI (B R 22 7 TR B 1 O E A o

7 MELD $#li 4 I, W& 6 I, J5 I P HRAEXT 5520, WFL 930k F] 59.49, Mikskr a2
41.19, PERE FREMOAWIE . XFRIWFE MELD XM 2 3616 N 1H &R E R I & 5, S iU N r Ry
TEXHE B A e B T, B A R0 PP R e 2™ 55 1) 559 1570 (1 ) 31

4.5.2. BEZSIA Token EFLZFAYHRART R

76 SMIS-V2 i 4E |, 32 5 ml %, o FESELAS fh Token &AL HS 1 H MAE M 0.380 F#4% 0.308,
REPETFIA S, R U128 A% 75 RIS A 28 HRN 42 JRil SO 5% 77 T LA S oiwk. B> CMPT B, %Y
XA A 1) HAME BRI R AL, S8 B0 B TR B B

7 MELD #5546 -, & 6 AT%1, BBRESALASLH Token EHLAS /5, WFL M 59.49 FFZ 51.31, #il]
CMPT 7£ MELD F[AFERE T EEAEN . BYCE B T BB 2 BUS RN R Z S B oG AR, AT ST 44 Rt
XA RS B — BRI TR S AR 1 i)

4.5.3. FEASA Token BECERAE MR

IRATAE SMIS-V2 Fil MELD #4545 b XS 5525 £ Token S&RC ds#E4T 1 7€ PRI T AEBIAL I o F
FRATBEHLIIE T — S8R AS, DLW SCAEZS (T) 2L I ZRad A2 b2 ] ) FH AL S AR (V) B SRS (A) IS
ST RAE RS B8R SR GBI T XV AL T X A BVER IBCE, JRATRENE B0 2R AR ST 72 7%
RS B A IE B RE, MIMTRAELS Token 1& N 2% 7E 2 SRS RFIERb-& b (1 R

XA (1) JM5E V) fEER

0. 035 4

0.030

o o o
o o o
-_ N N
(4] o (¢

Attention Weight

0.010

0. 005 +

0. 000

1 116 232
Modal ity Token Index
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Figure 3. Visualization of visual and audio attention weights on SMIS-V2
3. SMIS-V2 ExflmMEFSNER HINERI TN

A (1) R V) BEES

0.034

0. 033

0.032 4

0. 031 4

0. 030 -

Attention Weight

0.029 +

0. 028

0.027 4

1 16 32
Modal ity Token Index

XA (T) 3FEFH (D) BEEN

0.009
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0. 007 -
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0.005
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0.003

T
1 78 157
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Figure 4. Visualization of visual and audio attention weights on MELD
4. MELD EX#lsfESNER NRNERI TN

£ SMIS-V2 #iflidk b, 1 EIRIR AR R IR Token AR 5], Herh i o iR 5160 B0 B2 AL
Token (I T34t —), 1X4E Token A2 55LbnfE B H., PUILBAARIEE IBEE . A AR

DOI: 10.12677/csa.2026.161023 290 HEHLUREE 5 R


https://doi.org/10.12677/csa.2026.161023

FEE %

¥

PVEEA B R TAFRBSEIEA S FIIREA 2, R&FE T AMKI D Token HISKPR S
AN AIEL3 TR, R SRR R ML E AN B B (K08 Token A5 AR IIGERE, 24 Xy
Token FIFEHE A B, e mAEAE WA B 21 15 SCARLSAE B oy B DI SR AL 58 A0 5 43
BAEE, A0S N Token ERLA X LLM BT Z BT BT HA o EZMEH .

7E MELD #4846 b, 1537 BB AR AR &R Token FPAI 5], AFRIBSH AL EA 2, 2l T
AFARSEIEA S P IR EA—E, & FE T ERAID Token HISEPrBEBAA . X5 4 17
s FRATBENS B B SCARLZSAE I SRt R o o2 G e 0] PR R AR 245 0 AT R (L 1 8 5 S S ) 5
(K R 0 ML AR DX [ ST ARG 5 5 M AR T PR SIRAR S A5 U2, T PR A8 109 70 U 0 7 S
WD EAREUER] . BARRE, R IERAE 105 Token J&EHAC A 7E L RS RHERL & P A XL, RN
ST B RSEAN R BE S LS B TR E S+

4.5.4. {h Token 4 ¥ B HIHRLRAZ

FRATAE WA HE £ EatOh token FORCEEAT TIHALSEES, 0 NIUAMELL, Wnde 5 % 6 FiR, ANFD
token £ NIEREZE FEUDN, {H 6 MU token B U IR R, X 5B Token A i —8, 7%
PRA T RATHEH I CMPTA FIA R . 45 R R sl D IR T B E (S BaRIARE ), i £ iR
SINTLAAE R, Mg m [ E80CR, BB 7R R IA A8 7 50 75 5 2 AP — AN A B P A

XA (M) ¥R V) BEES

0.038

0.036 4

Attention Weight

° o o
o o o
w w w
o R g

0.028
0. 026
T
1 16 32
Modal ity Token Index
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Figure 5. Visualization of visual and audio attention weights for a sarcastic sample in the MELD dataset
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4.5.5. {h Token F R HEAIE 14 R B2 AR

N T BEMER CMPTA A Rk, AT T MELD B 42 o (1 — AN S RRE AR 35473 75 7 B0 T JE
o SCARNE N CXWRLF TIE” , (HZEMSE EAYIE RSB, H A5 B PH R . £ G SO ALK 3
WAy R, WlE s, M CMPTA @S5I 6 MG Token F1E 45l Token, i H T AAMAMLHE
RS R, RIMEIE T LLM W7, S IERRAN “BR%” 545 . XAEW T Token $E N 6
AN R R T A SCAKEAS I O HE FAME R

SR W], 4 Token $i&/>F 6 N, f Token KIS BIME ML B ELR, T AR CAMEL 1)
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