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摘  要 

频域电磁感应法作为重要的地球物理勘探技术，在地下结构探测中发挥关键作用。然而，传统频域电磁

反演方法存在解的非唯一性问题，容易陷入局部极小值，且计算效率低，难以满足现代勘探对高精度、

快速反演的需求。为应对这些挑战，提出了基于双分支卷积神经网络架构的深度学习反演方法。该方法

通过构建双分支结构同时处理同相位分量和正交分量，实现多维信息并行提取。通过设计自定义残差模

块增强特征提取能力，有效解决深层网络梯度消失问题，并优化空间分辨率重建过程改善梯度传播。在

含有80000个样本的合成电磁感应数据集上验证表明，相比传统反演方法，该方法反演相关系数从0.67
提升至0.99，均方根误差降低83%，在含噪声环境下展现出良好的鲁棒性和泛化能力。研究结果为频域

电磁勘探提供了高效可靠的反演技术。 
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Abstract 
Frequency-domain electromagnetic induction serves as an important geophysical exploration tech-
nique, playing a crucial role in subsurface structure detection. However, traditional frequency-
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domain electromagnetic inversion methods suffer from solution non-uniqueness, tendency to fall 
into local minima, and low computational efficiency, failing to meet modern exploration demands 
for high-precision, rapid inversion. To address these challenges, a deep learning inversion method 
based on dual-branch convolutional neural network architecture is proposed. The method con-
structs dual-branch structures to simultaneously process in-phase and quadrature components, 
achieving parallel extraction of multi-dimensional information. Through designing custom residual 
modules, the network enhances feature extraction capabilities, effectively solving gradient vanish-
ing problems in deep networks, and optimizes spatial resolution reconstruction processes to im-
prove gradient propagation. Validation on a large-scale synthetic electromagnetic induction dataset 
containing 80,000 samples demonstrates that compared with traditional inversion methods, the 
proposed method improves inversion correlation coefficient from 0.67 to 0.99, reduces root mean 
square error by 83%, and exhibits excellent robustness and generalization capability under noisy 
conditions. The research results provide efficient and reliable inversion technology for frequency-
domain electromagnetic exploration. 
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1. 引言 

非侵入式地球物理技术因能无损探测地下结构，广泛应用于资源勘测和环境调查[1]。低频双线圈电

磁感应(Electromagnetic induction, EMI)技术因其非侵入性、实时测量和多尺度适应性，成为反演地下电导

率分布的核心方法[2]。EMI 通过测量表观电导率间接反映地下电导率的加权平均响应[3]。为重建真实电

导率分布，需要依赖反演建模，而传统方法在效率、稳定性和多维建模能力方面存在显著挑战。地球物

理反演方法分为确定性和概率性方法，均广泛应用于 EMI 数据反演和电导率成像[4]。确定性方法如梯度

下降、高斯–牛顿法通过迭代优化目标函数快速估计电导率分布，但解依赖初始模型，易陷入局部极小

值。概率性方法如马尔可夫链蒙特卡洛(Markov Chain Monte Carlo, MCMC)通过贝叶斯推断提供参数后验

分布，可规避线性化假设并量化不确定性，但计算成本随维度增加呈指数增长。随着计算机硬件的快速

发展，深度学习(Deep Learning, DL)在各个学科中受到了广泛的专注[5]，这些硬件的发展非常适合支持

DL算法的运行[6]。作为一种日益流行的数据驱动推理方法，人工神经网络(Artificial Neural Network, ANN)
在地球科学等领域已取得显著成果，与自动驾驶汽车和医学图像分析中的图像分割类似[7]，ANN 框架已

被用于扫描电子显微镜图像中的黏土矿物学和裂缝图的提取，采用了基于卷积神经网络(Convolutional 
Neural Network, CNN)方法的 U-net 架构[8]。这些架构使用多个卷积操作层，并在结构和参数上进行修改。

许多学者研究表明，深度学习算法可用于解决地球物理反演问题。深度学习的优势在于强大的特征提取

能力，能够自动识别和处理复杂空间模式，在处理高维数据和复杂结构的反演问题时展现巨大潜力。Kim、

Nakata [9]和 Russell [10]比较了机器学习和地球物理反演，表明机器学习可以产生高空间分辨率的结果。

Das 等人[11]将 CNN 用于地震阻抗反演，并证明与传统反演方法相比，CNN 在地震储层表征方面表现出

更高的准确性和更快的速度。DL 反演过程在模型建立后能够即时进行计算，提高了反演效率。为了克服

传统电磁(Electromagnetic, EM)反演方法的缺点，值得进一步研究一种用于反演地下地电结构的 DL 架构。
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Liu等人[12]提出了用于大地电磁(Magnetotelluric, MT)反演的样本压缩神经网络算法和用于电阻率边界划

分的自适应聚类分析算法，Guo 等人[13]采用了监督下降法(Supervised Descent Method, SDM)用于 2D MT
数据反演以减少不确定性。Moghadas [14]、Puzyrev [15]以及 Puzyre 和 Swidinsky [16]提出了使用 CNN 模

型进行 EMI 数据、受控源电磁(Controlled Source Electromagnetic, CSEM)和时域电磁(Time Domain Elec-
tromagnetic, TEM)数据的一维反演方法。这些研究展示了使用 CNN 架构进行反演并取得了显著的成果，

表明 CNN 反演方法在电磁勘探中具有广泛应用的潜力。尽管如此，现有 DL 反演研究多聚焦于单一配置

或简化场景，多配置 EMI 数据的协同反演与噪声鲁棒性问题仍待深入探讨。本研究基于 U-Net 架构构建

了一个双输入 CNN 模型，该模型能够有效融合测量得到的正交相位(Quadrature-Phase, QP)和同相位(In-
Phase, IP)数据特征来反演地下电导率，旨在实现多配置 EMI 的快速 1D 电导率反演。本文模型在包含 12
层地层的一维电导率合成数据上进行训练，在含噪声的测试集上取得了良好的反演效果，验证了所提方

法的鲁棒性和准确性。通过对加拿大阿萨巴斯卡盆地西南部实测数据的处理分析，模型反演得到的电导

率分布与区域地质背景相一致，表明该深度学习方法具备解决实际勘探问题的能力。 

2. 电磁感应数据模型正演 

在频域电磁(Frequency Domain Electromagnetic, FDEM)数据反演中，正演模型通过模拟地下介质物理

特性(如电导率和磁导率)与电磁场响应的关系，为反演过程提供数据支持。磁偶极子位于理想化均匀平面

半空间模型上的一维电磁响应，最早由 Wait [17]提出。Frischknecht [18]将该模型扩展到双层半空间模型，

并列出了不同发射器–接收器配置下的互耦合比。Wait [19]和 Ryu 等人[20]使用反射系数和相应的递归

公式进一步扩展模型到水平的 n 层半空间模型。Farquharson 和 Oldenburg [21]采用了类似的方法，用传

播矩阵来替代递归公式，以处理分层半空间模型。用于描述电磁波的 Hankel 变换，可以通过数字滤波方

法轻松地进行数值计算[22]。数字滤波算子由一组采样点及其对应的权重组成；输出函数通过计算与滤波

权重相对应的采样点的加权和来获得[23]。基于这些理论，正演模型可以生成 EMI 数据，并从中计算得

到电磁场的 QP 和 IP，这些响应值将作为后续 DL 模型的训练输入。EMI 数据正演模型中的传感器配置

参考了 CMD-Explorer 传感器，该传感器能够进行非侵入性的实时电导率测量，并支持两种主要的传感模

式：垂直共面模式(Vertical Coplanar, VCP)和水平环形极化模式(Horizontal Coplanar, HCP)，并通过使用三

种不同的线圈环距(分别为 1.48 米、2.82 米和 4.49 米)，使得该传感器能够实现对地下电导率的深度探测。

在一个 n 层半空间的存在下，磁偶极子在频域中的电磁响应是通过[24]使用提供的方程式计算的。该解是

通过横向电场(Transverse Electric, TE)和横向磁场(Transverse Magnetic, TM)的形式展开的，这两种形式允

许简化边值问题的求解。根据[24]的公式，给出了磁偶极子源的位置为(0, 0, −h)时的总磁场 ( )A mTH 表

达式，其中包括主磁场 pH 和次磁场 sH  (以垂直磁偶极子源即 Z 方向为例)。 
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公式(1)到公式(3)可以分开计算主磁场 pH 和次磁场 sH 。以 T
ZZH 为例，计算方式如下： 
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0
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用于归一化的自由空间磁场 0H (单位：A/m)的表达式如下：对于位于(0, 0, −h)处的 X 方向磁偶极子

源： 
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2 2
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对于位于(0, 0, −h)处的 Y 方向磁偶极子源： 
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对于位于(0, 0, −h)处的 Z 方向磁偶极子源： 

 ( ) ( )00 2
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归一化响应后的 H (单位：ppm)为： 

 6 6
0 010 10

T P SH H HH
H H
−

= ⋅ = ⋅   (9) 

式(9)通常又被写为： 

 6 610 10
T P S

P P

H H HH
H H
−

= ⋅ = ⋅   (10) 

通过式(1)至式(10)的计算，便可以得到电磁场的 IP 和 QP (单位：ppm)分量： 

 ( )IP Re H=   (11) 

 ( )QP Im H=   (12) 

式中的 X、Y 和 Z 代表磁偶极子方向(更多的发射器–接收器组合见图 1)；更多的偶极子取向的正演模型

可以在[25]中找到；x、y 以及 z 是接收器线圈的坐标(单位：m)；h 是发射器线圈的高度(单位：m)；r 是
线圈间距(单位：m)；M 是发射器的磁矩(单位：A/m2)； 0J 和 1J 分别为 0 阶、1 阶的贝塞尔函数； 0u 是空

气层的波数；λ 是汉克尔变换的参数； TEr 是反射系数。求解其他方向的磁偶极子源的主磁场详情可以阅

读[26]。 
 

 
Figure 1. Transmitter-receiver combo 
图 1. 发射器–接收器组合 
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在正演计算过程中，采用了包含 12 个地层的地下电导率模型。各层的厚度值在 0.1 m 至 0.5 m 之间

生成，并按对数比例分布，随后经过归一化处理，确保所有层厚度的总和为 6 m。接收器的坐标设置为

(0.0 m, −0.16 m)，即接收器位于地下 0.16 m 的深度，而发射器的高度为 0.16 m。模型考虑了两种观测装

置模式(垂直共面 VCP 和水平共面 HCP)，以及三种不同的环距(1.48 m、2.82 m 和 4.49 m)。此外，采用

了四个不同的频率(102 Hz、103 Hz、104 Hz 和 105 Hz)。基于这些设置，分别获得了 24 组不同的 IP 和 QP
响应值，反映了在不同配置下电磁响应的变化。图 2 展示了合成数据集中的一个地下电导率模型(图 2(a))
及其对应的 24 个正演计算所得的 IP 和 QP (图 2(b))响应值。 

 

 
 

 
Figure 2. Subsurface electrical conductivity and its corresponding IP and QP values 
图 2. 地下电导率及其对应的 IP、QP 值 
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3. 使用 CNN 架构的 FDEM 反演 

FDEM 反演旨在通过观测数据估算地下物理属性的空间分布。本研究构建了基于类似 U-net 的多输

入 CNN 框架，能够直接从频域电磁数据的 IP 和 QP 响应值中预测地下电导率分布。该流程包括三个模

块：数据生成(图 3(a))、神经网络训练与验证(图 3(b))以及实测数据预测(图 3(c))。 
 

 
Figure 3. FDEM CNN ınversion flowchart 
图 3. FDEM CNN 反演流程图 

3.1. 训练数据集生成 

训练数据集质量对预测精度至关重要。图 3(a)显示数据生成流程，以 IP、QP 响应值为输入，电导率

模型为输出。为训练模型，随机生成了 80,000 个包含 12 个地层的地下电导率模型，每层电导率值在 0.0001
到 0.01 S/m 间随机取值。合成模型的 EMI 正演响应采用 CMD-Explorer 传感器配置计算。训练时输入和

输出数据均归一化至 0 到 1，避免变量偏倚。数据集按 70%、15%和 15%划分为训练集、验证集和测试

集。 

3.2. CNN 反演框架 

为融合 IP、QP 响应的不同地质特征，创建了双输入编码–解码神经网络模型(网络大致结构如图 3(b)
所示)。每个输入分支都是完整的编码–解码架构，由编码器和解码器构成，分别包含 4 个下采样块和 4
个上采样块。与一般 CNN 架构不同，为避免深度网络梯度消失问题，在每个编码和解码阶段都引入了自

定义残差模块，如图 4 所示，该模块由批量归一化、激活函数、两个 3 × 1 卷积层和残差连接组成，激活

函数采用 LeakyReLU，这是一种改进的非线性激活函数，定义为 ( ) ( )max ,f x x xα= ，其中α 是一个小于

1 的常数。它允许负输入值有小的正梯度，避免了 ReLU 中神经元“死亡”问题，有助于提高训练效率；

在解码器的上采样部分，由于 Keras 中没有内置 1D 转置卷积，通过维度扩展、2D 转置卷积和维度压缩

的组合实现 1D 转置卷积，如图 5 所示；为避免过拟合，在每个采样块后添加 Dropout 层，并在损失函数
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中引入 L2 正则化。网络架构详细内容如图 6 所示。 
 

 
Figure 4. Custom residual module 
图 4. 自定义的残差模块 

 

 
Figure 5. 1D Transposed convolution module 
图 5. 1D 转置卷积模块 

 

 
Figure 6. Details of multi-head CNN architecture 
图 6. 多头 CNN 架构详情 

3.3. CNN 模型训练与超参数选择 

在训练和验证过程中，网络参数通过最小化目标函数更新，采用引入 L2 正则化的 RMSE 作为损失

函数： 

 ( )2 2

1 1

1RMSE
2

n n
pre mod

i i i
i i

y y c w
n n

λ
= =

= − + ×∑ ∑   (13) 
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1

1MAE
n

pre mod
i i

i
y y

n =

= −∑   (14)  

式中 pre
iy 是预测值， mod

iy 是模型值。为评估 CNN 性能，还采用 MAE (式(14))和相关系数 R 作为评价指

标，R定义为预测值与实际值的协方差除以标准差乘积。CNN模型训练采用自适应梯度优化算法(Adam)，
这是近年来深度学习中广泛应用的优化方法。Adam 算法结合了动量法和 RMSprop 的优点，能够有效处

理稀疏梯度问题和非平稳目标，提高模型训练效率和稳定性[27]。CNN 模型训练耗时约三小时，实验在

云服务器上进行，配置为 GPU：RTX 4090D(24GB)和 CPU：15 vCPU Intel Xeon Platinum 8474C。适当选

择训练周期数量对网络性能至关重要，过多或过少可能导致过拟合或欠拟合。本研究采用提前停止正则

化方法，当验证集性能在一定周期内无改善时自动停止训练，有效防止过拟合。训练完成后，CNN 模型

接收 IP 和 QP 响应值作为输入，实时返回地下电导率分布。训练过程中，通过调整参数生成大量随机电

导率模型训练 CNN。如果 RMSE、MAE 和相关系数未达到预期，模型将基于不同电导率模型重新训练。

尽管核心神经网络结构保持一致，网络形状和结构差异仍可能影响预测准确性。为提高 RMSE、MAE 和

相关系数精度，对多个超参数进行了调整，包括隐藏层数量、批大小、滤波器参数、激活函数和优化函

数。验证测试后，相同的网络架构和权重参数被保存用于实测数据反演。CNN 具体训练参数见表 1。 
 

Table 1. Training parameters of the CNN model 
表 1. CNN 模型的训练参数 

分类 参数 值 

 训练集 56,000 

数据集 验证集 12,000 

 测试集 12,000 

 学习率 0.0001 

 激活函数 LeakyReLU(0.05) 

 优化器 Adam 

网络参数 L2 正则化权重 c 0.0001 

 Dropout 0.2 

 卷积核大小 szie 3 

训练参数 epoch 1000 

 batch_size 256 

4. 网络评估 

4.1. CNN 的性能 

在训练阶段，观察损失函数变化有助于评估算法学习能力。不稳定的学习能力可能表明算法性能较

差且泛化能力弱。图 7 展示了训练过程中损失函数随周期的变化，蓝色和红色线条分别表示训练误差和

验证误差。从图中可见，RMSE、MSE 和 MAE 值逐渐下降，表明算法具有稳定的学习能力，且训练误差

和验证误差呈现相似变化趋势。尽管设置了 1000 个周期，由于验证误差的早停机制，算法在约 300 次迭

代后稳定收敛。图 8 展示了训练和验证数据的残差误差直方图，呈现近似正态分布且主要集中在零附近，

验证了算法的拟合效果并符合最小二乘假设。图 9 展示了训练好的 CNN 模型反演结果(红色线条)与真实

模型(黑色线条)的比较，预测结果准确识别了深层异常并较好地反映了电导率变化趋势。表 2 列出了合成
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电导率模型与 CNN 反演模型之间的相关系数(R)、RMSE 和 MAE 值。训练、验证和测试子集的 R 值和

RMSE 值相似，分别约为 0.99 和 0.00020 S/m，表明网络表现出色，能够有效捕捉变量间的非线性关系。 
 

Table 2. Evaluation metrics 
表 2. 评估指标 

评估指标 训练集(Training) 验证集(Validation) 测试集(Test) 

相关系数(R) 0.99 0.99 0.99 

均方根误差(RMSE) 0.00020 0.00020 0.00020 

平均绝对误差(MAE) 0.0077 0.00014 0.00014 

 

 
Figure 7. Changes in training and validation errors over training epochs 
图 7. 训练与验证误差随训练周期的变化 

 

 
Figure 8. Residual error histogram of training and validation data 
图 8. 训练和验证数据的残差误差直方图 
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Figure 9. Inversion results of the CNN model on the test set 
图 9. CNN 模型在测试集上的反演结果 

4.2. 噪声水平的影响 

CNN 模型完成无噪声数据训练后，为检验泛化能力，在测试集上加入正态分布噪声，生成 5%和 9%
噪声水平的测试集进行反演验证。图 10 展示了不同噪声水平下的反演结果，在 0%、5%和 9%噪声条件

下，预测结果与实际模型保持较好匹配，表明模型在噪声环境下仍能有效反演。表 3 列出了 CNN 模型在

不同噪声水平下的评估指标(R、RMSE 和 MAE)。随着噪声水平增加，指标数值变化较小，表明 CNN 模

型在 5%和 9%噪声条件下仍保持较高预测准确性。特别是 9%噪声情况下，RMSE 和 MAE 几乎无变化，

验证了模型的鲁棒性。 
 

 
Figure 10. Inversion results of the CNN model on the noisy test set 
图 10. CNN 模型在噪声测试集上的反演结果 

 
Table 3. Evaluation metrics of CNN model on noisy test set 
表 3. CNN 模型在噪声测试集上的评估指标 

评估指标 噪声为 0% 噪声为 5% 噪声为 9% 

相关系数(R) 0.99 0.99 0.99 

均方根误差(RMSE) 0.00020 0.00020 0.00021 

平均绝对误差(MAE) 0.00014 0.00014 0.00015 

4.3. 与传统迭代反演的比较 

为验证方法准确性，将 CNN 预测结果与传统反演方法——勒文伯格–马夸尔特(Levenberg-Marquardt, 
LM)方法[28]进行对比。传统反演方法从初始模型开始，通过不断更新电导率模型参数，直到预测结果与

观测数据最佳拟合。本研究中，LM 方法采用一维 FDEM 正演模拟生成的 300 个随机合成数据作为初始

模型。为确保实验统一性，所有反演过程保持相同的层厚度和频率数量。为评估反演方法性能，计算了

RMSE、MAE 和相关系数 R 三项指标。如表 4 所示，CNN 模型在三项评估指标上均明显优于传统反演方

法。反演结果如图 11 所示，红色虚线代表 CNN 结果，蓝色虚线代表 LM 方法结果，黑色实线为真实电
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导率。从图中可观察到，CNN 反演结果在准确性上明显优于 LM 方法。 
 

Table 4. Evaluation metrics of different inversion methods on the test set 
表 4. 不同反演方法在测试集中的评估指标 

反演方法 传统反演方法(LM) CNN 

均方根误差(RMSE) 0.0012 0.0002 

平均绝对误差(MAE) 0.0009 0.0001 

相关系数(R) 0.67 0.99 

 

 
Figure 11. Inversion results of LM and CNN on the test set 
图 11. LM 与 CNN 在测试集上面的反演结果 

5. 实际数据应用 

 
Figure 12. Athabasca Basin [30] 
图 12. 阿萨巴斯卡盆地[30] 

 
为验证 CNN 模型性能，采用基于阿萨巴斯卡盆地实测数据的合成验证方法。如图 12(a)所示，该盆

地是位于加拿大的世界知名铀矿勘探区域，研究区域位于其西部，如图 12(b)所示，研究区域岩石电阻率

特性差异显著，砂岩、片麻岩和侵入岩具有高电阻率(超过 5000 欧姆·米)，而热液蚀变带呈现高电导率

特性[29]。本研究以文献[30]获得的一维电阻率反演结果作为基础数据。该文献利用神经网络反演阿萨巴

斯卡盆地西部实测大地电磁数据，获得一维电阻率模型。本研究将其转换为电导率模型，通过电磁正演

计算相应的 IP 和 QP 响应(如图 13 所示)，并将合成数据作为 CNN 模型输入进行反演验证。需要指出的

是，该数据集虽基于实测数据但经过处理转换，属于合成验证数据集，这种方法在地球物理学研究中已
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被证明有效[31]，其优势在于既保持了真实地质条件的复杂性，又为不同地球物理方法对比提供了统一基

础。为进一步提升 CNN 模型反演效果，本研究在原模型基础上进行迁移学习，首先加载已训练好的 CNN
模型，并冻结其中的卷积层和特征提取层，以保留已学到的低级特征。然后，添加了 5 个卷积层，其中

前两个卷积层后接最大池化层，第三和第四个卷积层进行了正则化处理，最后一个卷积层使用 LeakyReLU
激活并加入 Dropout 层以防止过拟合，详细结构如图 14 所示。使用训练好的 CNN 模型预测地下电导率

结果如图 15 所示，红色虚线代表 CNN 反演预测结果，大部分预测值与文献[30]数据相吻合，验证了方法

的有效性。 
 

 
Figure 13. IP and QP values obtained from forward modeling 
图 13. 正演得到的 IP、QP 值 

 

 
Figure 14. Added transfer learning module 
图 14. 增加的迁移学习模块 
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Figure 15. Increase CNN inversion results with a transfer learning module 
图 15. 增加迁移学习模块的 CNN 反演结 

6. 结论 

本研究提出了基于 U-Net 架构的双输入 CNN 模型，实现一维频域电磁数据的直接反演。该数据驱动

方法能够有效建立 FDEM 观测数据与地下电导率分布的非线性映射关系，显著提升反演效率和精度。在

含噪声合成数据集验证中，该方法展现出良好的抗噪性能和泛化能力。与传统迭代反演技术相比，该方

法的主要优势为：无需初始模型约束，可直接从观测数据重建电导率分布；有效缓解非唯一性和局部最

优解问题；计算更为高效，为地下结构的高效识别提供了新技术路线。 
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