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Abstract

Frequency-domain electromagnetic induction serves as an important geophysical exploration tech-
nique, playing a crucial role in subsurface structure detection. However, traditional frequency-
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domain electromagnetic inversion methods suffer from solution non-uniqueness, tendency to fall
into local minima, and low computational efficiency, failing to meet modern exploration demands
for high-precision, rapid inversion. To address these challenges, a deep learning inversion method
based on dual-branch convolutional neural network architecture is proposed. The method con-
structs dual-branch structures to simultaneously process in-phase and quadrature components,
achieving parallel extraction of multi-dimensional information. Through designing custom residual
modules, the network enhances feature extraction capabilities, effectively solving gradient vanish-
ing problems in deep networks, and optimizes spatial resolution reconstruction processes to im-
prove gradient propagation. Validation on a large-scale synthetic electromagnetic induction dataset
containing 80,000 samples demonstrates that compared with traditional inversion methods, the
proposed method improves inversion correlation coefficient from 0.67 to 0.99, reduces root mean
square error by 83%, and exhibits excellent robustness and generalization capability under noisy
conditions. The research results provide efficient and reliable inversion technology for frequency-
domain electromagnetic exploration.
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1. 5|8

RN Tt BRAY B AR R BE T AR I R 454, V2 R T BRI AR R A (1] A £k H
Tk J#% S (Electromagnetic induction, EMD)F AR L ARZ A SEHI &A1 2 ]OBEERIPE, BONRIE L B 5
FAP AL 72 2] EMI I8l B R W0 FL 5 38 ()42 S Bt I PR 5 28 1R BT 30 2 [3 ] B B SEH
FENA, T BRSO ER, MRS AR e A 2 4 ARE ) 5 AT AE R PR . HhERDY)
PRI ITIE S N PERIRE 2 Ve 732, 352 N T EMI E08s SR B S BR [4] . B PE DT Qo bh RS
BN NI e S TSGR B e AR i A SR INTER A G ST S RN R s T (EV X feg R SO PN i N
8. MR 77240 By IR a] 88 5245 1 % (Markov Chain Monte Carlo, MCMC)ii iz U1 - 74k 7 $2 it 8 5 36
o)A, ATALEEA A BRSO AN E I, (HH SRR ZE B IE N AR B K . BEE T SRR 1 ) PR
K&, IRFE>)(Deep Learning, DL){E &N RS2 R 12 I LVE[S], X LSRRk e R 18 A SR
DL 5yERIE1T[6]. 1A —Fh H 35 74T RO BIE SR BhHEFE /572, N T4 I 45 (Artificial Neural Network, ANN)
5 Hh BR A 22 A5 AU S 235 OR 5 B 30 R ZE AN R R A R R 2 BISRAL 7], ANN FEZEC
e T HH 7 B EER N E L Y M R A R EL, R T 2 TS B 4 W 4% (Convolutional
Neural Network, CNN) /772 ] U-net 2244 (8], iX Le 4044 ffi F Z AN GHERAE 2, FRAE SIS E B T 50k
VP2 H BRI, IREESE I R AT F T i ot kP B g sk o) it o % 2 ) (R L 34 AE T 98K (R AR AIE i Y
BE 7, Beti® B 3R B R Ab PR AT A A (AR 2, 7 Ach P v o B0 RN 2 25 65 M 1) s i 1) J R e B0 5K 7« Kl
Nakata [9]F1 Russell [10]b0AL T HLAS 52 I FIHOERY)BE S i, R BANLAR 52 21 0T DL AR i 3 [A) 4 H e 45 5 o
Das %5 A[111# CNN H T BBt s, FFUE 545 48 S 7 ik AH L, CNIN ZE R it /= 3R AE T T R I H
B A P AN B BRI S . DL I IS R AR Y e 37 JS Re 0 RO B AT U156, 38 7 RERR . N T ik
1 435 F i (Electromagnetic, EM) S 75 VA R s, ABAF33E — 2B A 58 — P T~ Sl i T i F 25440 1) DL 4244
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Liu 28 A\ [12]3&H 7 H T K s R (Magnetotelluric, MT) [ {5 IR AR Hs 48 1 25 4 26 S50 0 1 Ha BHL R 0 S )
3 EE R EE, Guo A [13]RH 1T 1B F47%(Supervised Descent Method, SDM)H T~ 2D MT
B S LA/ ANHf 28 1 . Moghadas [14] Puzyrev [15]1PL & Puzyre A1 Swidinsky [16]32H T8 CNN ##
AIFEAT EMI B . 245 H04(Controlled Source Electromagnetic, CSEM)F1HS 3 Hi f#(Time Domain Elec-
tromagnetic, TEM)UHE 1) —4E S8 7% . XU TR/ 7T CNN 280 iR AT S i 3 B4R 1 w38 1R,
B CNN R 7 VA IR BAA T 2 A ME ). Rk, A DL RIEH A Z RETHR—AE
sifiifb iz, ZHCHE EMI 28 1 ik R Sl 5 0 e o] AT AR R AR o ANBIFFEEE T U-Net ZER 1) 2
TN CNN LAY, %8 58 A 2l & 0 515 2 1) 1E A2 #5457 (Quadrature-Phase, QP)F1[F]AH A (In-
Phase, IP) B3 FHIE K I M TS 2E, BENIZACE EMI FIPUE 1D SR RIE . AR EAS 12
JEHZ ) — 43RG R TSR, EE A RIS ERS T R RIERCR, BUE T TR
VLRV E PRI AERAYE o 388 3 0 B DR BT 5% E 7 725 b 76 o 58 S DA () AR B A3 H, R A B LR
AN X IBH 5T 1 oA — 2, RWZIR L 5 2] J7 1 B A A U SEBR B AR i) )

2. EHBNEIREREIER

TE A, H G (Frequency Domain Electromagnetic, FDEM) {88 sy, 1E AR AL i ok Ul R A s iy 2
R (G 3 FRRIE 5 20 5 M e B R 96 3R, DN BT i R (A B S o AR AL T R AR X 5P I
7S (AR T | ) — 4 B G N, e 5 Wait [17]32 H . Frischknecht [ 18 $1Z A5 T4 g B XUZ 2 25 [A) #E 7Y
FEFNE T AF RS2 - FURESICE TR ER A . Wait [19]181 Ryu 25 A [2015 H S5 2 BORAR B 14346 15
AN DP BB AKCE ) n 22504 A, Farquharson A1 Oldenburg [2115K%H T 2K 77k, HfE
AR BB A, DIAE S Z R A A . T8 UG 1) Hankel 224, 7] L@k 207983 7
R A AT BUE V5 [22] 0 Ui 1 B — 2R RO BB B 2R s i R o i T S R
T AR XS B R AE i AN R SR A (23] 2T aX s B iy, IRV o] DLA R EMI 0, FEM P54
SR QP A1 IP, X L&l NAEKGE v 5 2 DL BEAY (I ZRm N . EMI 25030 1R AR R o 4% 2R D
2% | CMD-Explorer {5845, 16K GE AT AR APER ST B T 2805, I SRR 32 22 1) A4 JkAs
A T H LM A (Vertical Coplanar, VCP)F1 /K F-H HE il A #5 20(Horizontal Coplanar, HCP), Ffil it # H =
TRAN [ ) 2 B PA BE (93 70l 1.48 2K 2.82 KA 4.49 OK), 4512 A% 2% BE % S BN b T H 32 30 (1R BE AR
TE— n 2P RIWAEE T, MEARAR 5 Stek A 0 s g B @ i [ 2448 P SR L i) 5 BE ST BRLI » if2
JE IS 4% M) H 3% (Transverse Electric, TE)F11# [/ #3%(Transverse Magnetic, TM)AJFE R EFHT, KAFE R R
YRR I R SRR . RIE[2410 A5, 4 T RES I IR IR E (0, 0, —h)I 1R HT (A/m) &
A, KPS H, MRS H, (DR BT IRRD Z 75 1R 9 6) .

M x%

T _
HZX__
dnry,

(e—uo(z+h) _rTEeuO(Z_h))ﬂ'z‘A (/ll")d/l (1)
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M K uy(z+
HS, = [re 22, (Ar)da (5)

0

FFIH— i 2% R B (AR A/m)oF s T 6 F60F(0, 0, —h)AbH X J7 RS T
Vi
H;:_M(z_zﬁe-w A h)dl_%g [e™ 220, (r)da ©)

0 L

2 \o 0
HQ:——(l—zle o= g (Ar dz——V—zj =022 (Ar)dA 7)
0

XFFALF(0, 0, —h)AEH) Z J7 TR s AR AR 1

HY = % [ 22, (Ar)da (8)
To

VH—AL W N S5 B H (BAL: ppm) A
H" - H” HS

H=10° =10°- 50 )
() IEH X E N:
H -H" H®
H=10° —=10° F (10)

A ZERQ)MTHE, En] AR BRSSP f QP (FAAL: ppm)/rE:
IP = Re(H) (11)

QP =Im(H) (12)

X Xo YR Z AREEREABN T 77 (B8 2 0 R S48 - ISR & LR 1)s B8 22 B A Bl B0 v (1) T e A Y
FIAE25 ] E]: xy y DA z RIS P R ALAR (AL m)s h R SRR (R m): r 2
LRI AR (A : m)s MR RS BMRGECRNL: A/m?); J, 1, 3008 0 By 1 I DUZE IR R 8 w225
BRI A RV GURBIRNISEG ry RS RE R FARTT 7] R A3BR F- U5 3 137 7S vT LA B
TE[26].
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Figure 1. Transmitter-receiver combo
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TEIEBFEOS RS, SR TAES 12 M HZMH TR SRR, SEMEEHEE 0.1 m 2 0.5 m ZH
ARG HAERHEU B A, B AT — A, BTS2 EE RSN 6 m. IS AR E A
(0.0 m, —0.16 m), EPHZRAL THU R 0.16 m HUVREE, T AR #RASEEN 0.16 m. BRI [E T AU 3
B EEE I VCP F/KEILH HCP), PAAK =FA A F3AEE(1.48 my 2.82 m F14.49 m). Mt4h, KH
T A FRFR (102 Hz. 10° Hz. 10°Hz fl 105 Hz). 3 FIXSEE, 5H35 7 24 HAFK 1P A1 QP
Wi AR, SR T FER R N B B AR . P 2 JROR T A R EESE R — AN R L S R (1] 2(a))
S HXT ) 24 AN TEBE VST IP AT QP (14 2(b))Mi SNAH «
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Figure 2. Subsurface electrical conductivity and its corresponding IP and QP values
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2. WTHSERHIINA IP, QP &

—— IPYY Orientation, Offset 1.48m
—— IPYY Orientation, Offset 2.82m
—— IPYY Orientation, Offset 4.49m
—— IPZZ Orientation, Offset 1.48m
—— IPZZ Orientation, Offset 2.82m
—— IPZZ Orientation, Offset 4.49m
—=- QPYY Orientation, Offset 1.48m
—=- QPYY Orientation, Offset 2.82m
QPYY Orientation, Offset 4.49m
—=- QPZZ Orientation, Offset 1.48m
—=- QPZZ Orientation, Offset 2.82m
—=- QPZZ Orientation, Offset 4.49m
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3. (€A CNN Z2#8) FDEM FE

FDEM i 5 {58 WA 15 S R @ M 2 (R 40 A o AR FEA 2 T JE T340 U-net 19250
N\ CNN HEZE, BEWS B3 )\ AT F G R (0 TP A QP Wi i {E R U N L SR 0 A0 . iZFEEHE =AM
P B A 3a) MM S IR 3(b)) AR SR T (] 3(c)).
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Figure 3. FDEM CNN nversion flowchart
[ 3. FDEM CNN RCERIZE

3.1. MNSEBIBEERR

VI ZRE0E 56 T o TN RG 1S o0 E B . &) 3(a) o B8 AR B RS, L IP. QP MRL{E NHIAN, H G %
BN H NIRRT, BENLAE R T 80,000 ANMELE 12 N2 [ T e SR B8, 43 2 B3 5 R AE7E 0.0001
F0.01 S/m [HIBEHLEUE . & BABEAL) EMI 1E 51T 5 R | CMD-Explorer &S HCE 115 . YIZRI 4 AR
AR E R 0 B 1, B R . BARETL 70%. 15%M 15%K1 50 N IIZREE . SR uESE AN
.

3.2. CNN FSRIEZR

NRA TP QP Wi I (1) AN [R Hb SR ARFAIE , B3 T U\ G i — AR 6 X 4 A5 10 () 24 K B0 # 4] 3(b)
FiR)e BN SCHR R SE B M St - AR ZEH, M gmiD s AARRD 2SR, Al 4 AT RFEHUR 4
A FRAEH . 5 CNN BRG], Sy G iR 5 I 28 16 5V 2% ) R, ZERRAN Sl ARSI BEA S I N T B
SE SRR, WE 4 FoR, ZAEEEItE N b BORER B PN 3 x 1 BRUE R SR, RS
PRHCR ] LeakyReLU, X & — R AL BT R, € SON £ (x) = max (ax,x), Ko &—ANT
1R E R NG /NMOIERREE, 8% T ReLU AL e “3ET27 W8, AT REIZGNCEK;
TERRID 2S00 ESRRERE Sy, BT Keras TRANE 1D BB EHBM, @Y . 2D &8 B RUNLE RS T 45
ML 1D BB, W 5 PR s, ERA KRS I Dropout 2, JFAE4K B AL
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FEIN L2 IR . B2 e TR N B0 6 BT o

PRI B

l HtE)H—4k+LeakyReLU — convlD convlD

Figure 4. Custom residual module

El 4. BEXHZERR

T —fb+HLeakyReLU _.-

1Dk ?";E";é§ HEIT2DRE BN z}%%;éfg —_—

-— Y FYERE 2D Conv2DTranspose FE4a 4 A 1D 4-

Figure 5. 1D Transposed convolution module

5. 1D & EEFRER

32 32 32 32

convlD+leakyReLU+
ResidualBlock X2

l max pool+dropout

I conv1Dtranspose

|::> copy and crop

l conlD+flatten+dense

Figure 6. Details of multi-head CNN architecture

B 6. %k CNN Z2Hi¥HE

3.3. CNN #8145 B8 BuEF

FEVNZRMBGIERL FE T, W28 S ol e/ ME B AR R BT, SRAISIN L2 IEMIAER) RMSE {EAHi%
PR

n

/1 n
RMSE = =5 (37 — 7 ) 4 ox 223 02 13
\] (e =y )”ingw’ (13)

n -
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MAE = %Z| yrre— yred
i=1

(14)

e RIME,  yred SRAREAUE . AV CNN HEE, IR MAE (GR(14)FIHESC R 3L R 1E VPN 4G
B, R GE R TROIIAE 5 52 BB R0 77 22 B DA bR #E 22 A7 . CNN BRI 2R FH B 3 A FE AR AL B (Adam),
R VTAERIR S 22 2 2 N RO AL 732 Adam BLyE45 & 1 B &35 A1 RMSprop I A5, BEfE A kb
ARG i AN PR H AR, RS ELI SRR AR e M [27]. CNN BB YIIZRFERT £) = /N, SEIGTE
=45 % Bt T, BLE AN GPU: RTX 4090D(24GB)#! CPU: 15 vCPU Intel Xeon Platinum 8474C., i 24i%
BRI B E N 2t pe 20 2, i 2 et D AT e R BUL LA BURIN G . AR SR A4 1k R
WoriE, HAEUEEVERETE — € AN L ECE R B aFE R, ARWEEA . IZRERUE, CNN B
FEW TP A QP Wi EAE AR AN, SERFIR [ R S E A ISR AR, i TR S O E R AL
TR CNN. W15 RMSE. MAE MU G R BORIE B P, B T AN 5] v 3 3 R )1 25
JUE R P I 28 S5 ORFE— 3, I TR AN Gl 22 e A1 ] RE s M TN vEEAf 1% . A4 RMSE. MAE A
PR RBOGEE, X2 MNESHOT 7%, ORFRBUZEE. O, SRS Bus R I L s
o BUEMNASS ,  AH F] R X 28 ZERG A B 2 B R A7 F T SR St . CNN BRI S 04 1.

Table 1. Training parameters of the CNN model
= 1. CNN #HEMINIZE S

PaEs ZH {IE1
s 56,000
R LAl 12,000
A 12,000
S 0.0001
WS BRI LeakyReLU(0.05)
Ltk 48 Adam
RES S L2 IEMMEALE ¢ 0.0001
Dropout 0.2
BRULE KRN szie 3
NS epoch 1000
batch_size 256

4. ML
4.1. CNN Hy14gE

FEVIZRIT Be, IS0 s B AL A B TIPS SR ST BETT . ANRRSE 5 S BE T W] RE R W B MR e
ZHEZAREI59. 18 7 JEoR T U Rad AR vh 451 2% e BB P BT A2 4k, S8 Ea AN 2 2 2% 20 0 AR Il Rk 22 A
BrAlEiRZ . MEHF L, RMSE. MSE M1 MAE {E32%1 T F¢, RUIFERARERZT6, HilZiRzE
AN UER ZE S PR S . A BCE T 1000 DM, W FRAERZ I RAENLE], SFRAEL 300 ok
PIGRE BN 14 8 o T I ZRAN G UE B i ik 72 R 22 BT B, S DL AL IE &S oA B 3 BAR P AE R I,
BAIE T FERIA G RORIFAT G ine b oM. 14 9 B T UIIZRAT 9 CNN A2 S i 45 R (AL T 2 2% ) 5 HOSE
PR (RO LR, TN S RAERAIR T 1R R 50 Bt s e 1 L R A . R 2 5 T Ak
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H SRR 5 CNN SRR 2 [A) (A 55 2 BU(R). RMSE F1 MAE 8. 1%, BRUEAINR T4/ R A0
RMSE {EAHEL, 43512074 0.99 F10.00020 S/m, FEHMZEERIH 7, GEGEA RIHRAZ R MIELER R

Table 2. Evaluation metrics

= 2. HEIERR

RN Y1254 (Training) I 4F 4 (Validation) AL (Test)
R RHR) 0.99 0.99 0.99
5177 iR 1% ZZ(RMSE) 0.00020 0.00020 0.00020
SERLENTR ZE (MAE) 0.0077 0.00014 0.00014

W 0.15 _— Tra.ining ErrorRMSE
Q — Validation ErrorRMSE

=
o« 0.10
0 50 100 150 200 250 300
Epoch
0.04
m = Training ErrorMSE
g 0.02 — Validation ErrorMSE
0 50 100 150 200 250 300
Epoch
s = Training ErrorMAE
<§: 0.10 - \/alidation ErrorMAE
QibS 0 50 100 150 200 250 300

Epoch

Figure 7. Changes in training and validation errors over training epochs

B 7. G SWIERERIIZGEHIZEN

Training
3 100000
c
(0]
=
g 50000
[T
0 20.0010 __-0.0005  0.0000 0.0005 __ 0.0010
Validation
20000
oy
=4
g
2 10000
g
[T
0 50010 20,0005 0.0000 0.0005 0.0010

Figure 8. Residual error histogram of training and validation data
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Figure 9. Inversion results of the CNN model on the test set

9. CNN #EB7EMI & ERY ROREER

4.2. IREKFHRMR

CNN R 58 s e 7= Bt 2 )m, oke sz ALRE o, RIS BN IR AmE S, A2 5%AT 9%
Mg A AT BRI AR HEAT SOOI . 151 10 JRZR T AR KPR B AE R, 7E 0% 5% 9% M 75 2% F
T, TNEEIR S LR R CRFFRCAF UL S, 3 BB R AR R 75 A8 R Th e U . % 3 FI1HY 1 CNN AR AUAE
AR 7S KPR PSR R (R« RMSE Al MAE). B M s K38 00, $RFnEUEAR BTN, R W] CNN L
TUAE 5% 9% 75 S5 AF R AN PR R T AE R . 55002 9% M A1 L R, RMSE Ml MAE 1P 421k,
IR T AT &

0

1 |
E’ £ £ £
£3 £ £ £
o o o o -
$ 4| —e— Real 3 3 3 f
—*- No Noise
5 | —a- 5% Noise
--A-+ 9% Noise
8.005 0.006 0.007 0.008 0.009 0.010 0.006 0.007 0.008 0.009 0.010 0.004 0.006 0.008 0.010 0.006 0.007 0.008 0.009 0.010
con (S/m) con (S/m) con (S/m) con (S/m)
Figure 10. Inversion results of the CNN model on the noisy test set
10. CNN BB ZEIR IR E R RRE R
Table 3. Evaluation metrics of CNN model on noisy test set
= 3. CNN R B 7EIE A it 85 ERYiT Ak e #R
REEEEN W75 N 0% MR 5% RN 9%
HRAHR) 0.99 0.99 0.99
5177 iR 1% ZZ(RMSE) 0.00020 0.00020 0.00021
SPIILERTR ZE(MAE) 0.00014 0.00014 0.00015

4.3. 5EGERRRIVECE

NBSETTIEAERR P, K CNN TINS5 3R 5 4% Gt S 5 5 —— 830k - 5% /R%5(Levenberg-Marquardt,
LM)JE[28 AT X L o AR50 ST IE MBI R 45, I A R i 3 RS H, BERIWNE RS
IR A S o ABEFTH, LM 53R A —4E FDEM IR0 AE U 300 ANBEHL & BB 1E i vIi6
B N RSEIR S —VE, T R CRAF AR R ) J2 B MR S . PP R TANERE, THRLT
RMSE. MAE FIAHK R % R =R R, W14 4 Frx, CNN BALE = TpPAh 4R br_E 3 ) SR T4 4 s i 7
o PORERIE 11 PR, AEBELAR CNN 4R, HEOELAR LM Tikgi R, BOSSE LA
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TR, NEPAIER], CNN S ss REEMERTE LB EIT LM J5i%k.

Table 4. Evaluation metrics of different inversion methods on the test set

F 4. NERCERGEEMAE PRI E IR

SR WIRES et [ IETTIR(LM) CNN
175 R %% (RMSE) 0.0012 0.0002
LT 1R 72 (MAE) 0.0009 0.0001
MR ZH(R) 0.67 0.99

=3

-

N

Depth (m)
w
Depth (m)
Depth (m)
Depth (m)

IS

== pred_con_DL

—a-- pred_con_LM

0.006 0.007 0.008 0.009 0.010 0.005 0.006 0.007 0.008 0.009 0.010 0.006 0.007 0.008 0.009 05 0.006 0.007 0.008 0.009 0.010
Con (S/m) Con (S/m) Con (S/m) Con (S/m)

4]

6

°©

Figure 11. Inversion results of LM and CNN on the test set
E 11.LM 5 CNN Uit & F IR RS R
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