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Abstract
The field of 3D content generation (AIGC-3D) is undergoing a paradigm shift from implicit
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representations like Neural Radiance Fields (NeRF) to explicit modeling via 3D Gaussian Splatting
(3DGS). While 3DGS achieves remarkable advances in rendering efficiency and photorealism, it intro-
duces novel structural artifacts—such as Gaussian popping, needle-like distortions, view-dependent
flickering, and floaters—that challenge conventional Image Quality Assessment (IQA) frameworks.
Traditional metrics (e.g., PSNR, SSIM) fail to capture 3D geometric distortions, while subjective evalu-
ations (e.g., MOS) are costly and non-differentiable, resulting in a significant “semantic gap” in quality
assessment. To bridge this gap, we propose Agentic-1QA, a multimodal agent-based quality evalua-
tion system that integrates perception, memory, and cognition. Our approach uniquely incorpo-
rates the MEt3R geometric consistency metric into the 3DGS evaluation pipeline and combines it
with a Retrieval-Augmented Generation (RAG) module—built upon CLIP/SigLIP embeddings—and
a LangGraph-orchestrated Tree-of-Thoughts (ToT) reasoning engine, establishing a hybrid assess-
ment paradigm of “metric extraction-retrieval augmentation-structured reasoning.” We conduct
comprehensive experiments on a curated multi-source dataset comprising 3DGS-IEval-15K, MUGSQA,
and NeRF-QA. Results show that Agentic-IQA achieves a PLCC of 0.892 and an SRCC of 0.876 on the
full test set, significantly outperforming the current state-of-the-art method Q-Align by 6.1 percent-
age points in PLCC; the advantage widens to 11.2 points on the geometry-degradation subset. Abla-
tion studies and qualitative case analyses further confirm the necessity of each component and
demonstrate the system’s superior interpretability and robustness. This work not only delivers the
first geometry-aware quality diagnostic tool for 3DGS but also advances AIGC-3D evaluation from
“looking realistic” toward “understanding structure.”
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1. 5|8
1.1. ARERS5BAER

40T, Z4EN AL B(AIGC-3D) U IE L I — R ZI e N #2 [1]: M BARE SRR ML D I 24
3% (Neural Radiance Fields, NeRF)iZ& 5 #% [a) 3 F 2 =0 L[ @2 (1) 3D & ik ik (3D Gaussian Splatting,
3DGS) [2]. 3DGS it & m) JE m R g s AT B RXRIE, AR s R E N ERN, B
TE VIR, SEL T SN SR B S [3]. AR, X RORTE B AT R 1O A R O R AR, B
HIZIK (popping)~ R JUTHe AR . 0 s 10 AR 502 DA K 7 mi B 75 (floaters) 5[4

1488 B4 i VA (Image Quality Assessment, IQA)FRFR(U1 PSNR. SSIM) =E B o4 2 2 H 115 5 14
BB, ME DA R IR B A B = Y ) LA G A REAE R 25 R 1 SR B[S ] o I DA A4 55 D8] I 10 1 8 38 1 0
XPGVE” s —J7TH L, FFR BRI Z 0O R R (AN B A SRS S v A A A S ) LA AT B B A
A=, FUIN T EWREE WA 5 MOS) B &R e tE, 2R T A & A Al sy HoHe
DLARASEALERE , e LRI o 2 1Y B S A AR S AR AR (6] TR G X —P83, AR R —FR S
CHRPRREL - R RO - BAEREIE Y ) 2SR E L R A . R RAENE THER TEE
T SEIL AT &) TV, O 3D WA =S b nl il . Wi MER 2 TR, BHik—2, migaolA
ME3R [7]J U] — 80 &, JH45 A1 R 1 50 4 il (Retrieval-Augmented Generation, RAG) 5 3£ T LangGraph
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(1) BLAEM (Tree of Thoughts, ToT)HEEENLH, & fEE L —ERl &R ZRHE R A5 5 2 2 48 H B 1R & YA
FriesX, HEZ) AIGC-3D Jii & VAl M5 — R S AFABLRE VT 3 7] 22 4 FE (1) L ART 5 S0 % AR AT

1.2. ARBIFESERTR

AW I B E RN = 428 N 25 R B VAL T VEE v R . 2 SV RNR R ERIRR, $E—
Folstie L SR RAS FE S5 HE R R 00 BB B PP A AE SR o DO T DAAE AR bt oty 380 o (=] H B — FR AR TR A 1 “HA R
B, ARSCHTRER ) FR G5 R PPl I R (0 B S R SR B I, RO SR DT ILAE DL = AN T

TG, TEVHAS4ERE b, ASCE Ok JUA— S0 B & MEGR RGN 3DGS FE WA R, 5%k
TS 1QA Fabrxt =445/ K I E X o MESR BT 20 A T m il oA 8 — 8, sE A 20N
B AA R B FERA BRI U RS, s SPEAh B2 (A 31 m] SR R AR 31

Fok, FERMRERR T, AR R TSN (I CLIP/SigLIPYM @ s & AR, JREa
R RRAG)HLH, LTS H 5 N ISR . Z AR T 3D A B B PPl ik = Eosk
SEPPER, I RAREIE SR RO T RKER, FeT0 5 WEUE & 805 1R & etk .

e, FEHEFENLE] L, AT NE4ER (Tree of Thoughts, ToT)5 LangGraph TAE4mHEH A, #)a
— 2R AR R A HERE 5 8 . 25 SRR N I AT R AR R IR RS R S IR RS IE B kAR
PEIR, 8 “TRARBL - FFEA R - ZRE 127 KA, SEIUN =4 N AR E TU S R R
(R HER 58 A 5 B AT -

Zx ERR, AREFRANCN 3D mnikik S A Ga AR g TR TR B E VA TR, HAE
TEWETIRER TN TR G I3l FIPEAS 5 40 W] W ATIT G E A RN AR, Ak AIGC-3D ()5 K R
TRAEFIL T SRR AT

2. FRMESEAGRER
2.1. FRUFLARRE

3DGS FIYE Her% O™ EAK R T CUDA fii A PyTorch fRASIREHAICHS, H & H & X CUDA H-1
RPE(8]. N TS “HOBIHIIR” IR IRAEAS [F ST A B — B, L AUR A Docker 2 #LTT .

R4 3DGS K H AR (U Scaffold-GS, 2DGS)HI4RIFEEK, UK H 2 B Bty & (Multi-stage Build) 5
& o A B B nvidia/cuda: 11.8.0-devel-ubuntu22.04 1 Ry 3EAH 415 . LI B AL 52 3 /) NVCC i 5%,
FT4ui¥ diff-gaussian-rasterization F1 simple-knn 2540 4HfF. 230 E X TORCH CUDA ARCH_LIST
="8.0;8.6;8.9;9.0" LA 32 £f  Ampere (A100/3090) X Hopper (H100/4090)Z2 ¥y . iz 47 By Bt %k I % & 20 11
nvidia/cuda:11.8.0-runtime-ubuntu22.04, {52 #2341 whl 3T 22388, W/ NERIRFR

2.2. YRKSTMAERN

NSAEPTHR I SRS B B R B RS, AT Tl ZUEELG K “ SRS =4k
ARV AR o ZEIRRE S 2 A EAM R TR AE, SR 3D iR e v Oy
o 2 RURIBAAR 2 DL R 5 R miz A BE T KPP Al 75 5K

2.2.1. BIEKEE AR

AHFLLL 3DGS-1Eval-15K [91/E 8 ENZE U . 28 IS a5 15,200 5KEFEIR, HEE 10
ANES R 6 Fi AU 3DGS ST A K 20 MRS CIE RS E . KON EE T RGEMEHARE T
Wik EPIREGAR . V7 A 2 3DGS FRA MMM R B, JHRME T i A2 E W P =0
#3773 (Mean Opinion Score, MOS). EA M FT B i K1) 3DGS % H IQA %54, 3DGS-IEval-15K JMfgts
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2], RAG KR A R R O AR T A B it 1 SR8 S 4

NIRRT AE AN RN 261 T A& et AR N BB S MUGSQA [10]. i E008 SR R0 2 B 1
WA, A& B R = PIA A EERTE R PR B S EURR AR A . LB E F T30 prde &
girh R RREIBL] B0 R, £ 7 RS2 36 P H T PP AR T LT 4075 J2 R AL AL UL

BEAh, ARl R SR I R AN = YE e RN R R B B RE ), AR 3DGS H55E thizid
WA, ASCRA NeRF-QA [1TE NI . 20 R TP AR S (NeRF) R, B85 2 Ffa R
N TR RNV URE , T R S TR VA AE AN R = 4R o= i aXla] (il A2 RE 1 S iz AP Re ..

2.2.2. FREHTLIERIE

B BN B 40 G — AR HEAL AL B AR, DA ERERIE — B S R A nl i et B RERELIR
=AMBER

e, R IE PR EAT TR A . BAT N REA A bR HEIL Y JSON Jusiiic s, FB
45 scene id (AR IRAT). method (A2 Ei5E%). viewpoint index (ML & 5]). distortion_type (2 E 2 51)
PAK MOS (P FEMIE5r) o ARG RERI SRR R 725 DR A R B At S 4

HK, KH OpenCLIP (ViT-H/14) [12]#5 B0} 4= 58 EMGREAT 15 SCRFIEFE R, A8 plmr 4EAL 0 R N [ 2
XL ) B AAAF#E T ChromaDB [a] &4 EH, M RAG BRI RIKPE . ZHER REiRE%
TESEFD LA S [R] P 56 RS FE AR IR SCRE AR DT AT, 525 3R T RIS 2R R [ 13]

e, RN AT H R AR RE 7T, ARSCRI B H IR AL 155 2Y Depth Anything V2 [14] 55
yEZAh T8 DSINE [15], AAFik BG4 it A5 (Pseudo-Ground Truth) JU{] B, GHEIR K 5144k
Blo X2 L 5e0 s B RARE S EAE, (HE DR RIAES: . SR EFESERERR, A
WEZHEB R OO R [ 16].

ik, AV ARAES 7 3DGS MAIR AR, B2 N BT T
ARG HIZ AT T ARHEAG T B AR WA 5 SR AT - 1012 - IV = B35t 7 m i, g5k
(OETTPNE -3 R

3. 5k
3.1. SUESEMAIRERIE

TEAE R EMGEAS H,  H OLAAR U HE I E T (Oversmoothing, &5 WL -4 HAURSE 284 2 g AN Y] JeC) A vy
AR [17]0 ABGEH) PSNR JoiEA RUX 70X B (18], PRI FRAT R 2291 N T-BE S0 737

SUHELA B 53 M7 (Texture Gradient Analysis)

U E R T Lol i G EE oAk AL . FRATRA Scharr H 7 & A5#HER Sobel H¥,
A Scharr 51 7E T i A4 5T 0 BAG TE L IR e e AN AR 1, Re % 8 BB M A 42 B RU N SO AR A [19]

TR L, HARCPRAE G AT EHE G, 1H I T

3 0 3

QLN()NPL (1)
3 0 3
-3 -10 -3

G=[0 0 0l ©)
310 3

FRBEIRME M = G? + G (BT 1173 A5 BE S B0 S e PG AR T Ol P o G SR 7 el v 2 i e s AR ), )
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PR B = SO AN (R AR KR A e W 2, AT AP AE Mg 75 08 52 6. R BE MK THERLR P MR
MR 5 25 LA AR FE (Skewness), A% ] B — 5543
$i7 57 7 75 % (Variance of Laplacian)
VER—FARAR T S A ) “ PR i A AL, R BRI FH A 0 5 P 77 228 S WU 8 A AT
Score,,, = Var(Al) 3)

MZA BUK T4 € RME I, LangGraph #9125 £F10(Conditional Edge)l EL il & “1R&E"” 73, Bkl
JRBE BT VLM PP, AT v 53 53 i

3.2. IBX—H145 CLIP/SigLIP #t A\

FETeZ7% (No-Reference) 7 5t 1, FIWI ARG R GG N BRI B REE, ﬁaﬂ]ﬂﬂ% CLIP (Con-
trastive Language-Image Pre-Training) [20]5%H MG SigLIP [2114 EUER MG 21 = 4E 15 2316 .

CLIP R [ AN 5 R SO SR AR ) A2 52 B (CLIP Score) [20], iﬂ’ﬁi’ﬂ RAG K21
. SR, JFUR CLIP BRAAAE “S0 - R % (Texture-Shape Bias), & AT 8 STEM R L
HTARJUATR B IEf L . B, —MIA R RER AR AT Redl CLIP RN KRR N T IEX
Z, RRE MR XU G A W -

1) AR SR N AEHbRHE VIT-B/32 [22]52HU 4 AR .

2) ZERJRURIRON 8 4 AR O B 10 (Shape-Biased Fine-tuning) AR Y, 5% &3 i o G 84714
G PAEFL S FREAT RN, DAR AR SO 2515 2

3) 3D Gaussian Splatting [F145 53 14 48 45

3DGS WPl bt 2D BG4, RREW KU 556 B I — 8k [23].

Z H B — BUPEA 25 (Multi-View Consistency Loss)

£ 3DGS WZih, PRI Z AR LT IER . 8 B84BT 55 3 1505 00 22 RVl T LA 5
o XTTARLE i FAHATALIE 7, IS TH IR B2 B Dy RO AL Ty WGP i R BRI BN

”W ”THJ) Ij I

fEm

“

WU SR HERf, A3 5 iR W OB S ESEER [mEE G o AU Lone BLEETRR T IR T
R VR (Floaters)A71E

TR 1B D-SSIM (3D Distance-Aware D-SSIM)

L4 SSIM fETHRE R Bl FUAHALBEIS , RBOAH &R FAE 2 () B2 AH AR [24]. {HAE 3DGS B4
H, BRI IA SR R 5 SRR BB A, (HAE 3D AR EAHZ B K[25]. N T B AEIR
JEAEBALTI R, BRI RSN 1) D-SSIM:

. exp{_w

20, ®)

AL wy, T SSIM T AR ER I oTik, 3 R OUAE IR FEARIT (453K 18] TS 5 M AR AU, DT SRS v
HI PP 14 55

4. BER
4.1. HEiR—: ZHE A FFIRELES (The Perception Module)
AR R B CHRAS 7, 55T R R AN LT AN G B R A BB M BRI . SR G AT,
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AR AR >N “REE” « “WEMIE” 5 ¢ BE” =K.

4.1.1. 2D {RE E i5H#R(Fidelity Metrics)

IR PSNR 5545 Gedi b 5 IR A G TS, (AR B HETIAS T Bl o

S 3% torchmetrics E, #tETHE PSNR. SSIM. LPIPS (T VGG M%5).

USRI £ X 3DGS [V s e, 5] AFERR INAL MSE (Masked MSE).. il it 15 5t 70 EHE 4 (41 Segment
Anything)¥ FHEEHE 505, 20l E RRXKEFERELL, K2 3DGS 7875 75 St Ak 137 s e 75 X 44
WG AIB AR KR, (642 5 PSNR SEMAGH/N

4.1.2. 3D JLIT—E{E384R: MEGR

JREE: MEtR FH] DUSBR M 261 7E T AHIL S HU 15 L T EEPIEKRALE (1,1, ) FIECE 3D fz,
FFi I J LT A s 1 B RIS1 2SI AR B 1, o« AT JUTEE R UER, 1, N5 1, TERFE 23 A s FEAR DL

R

L SNSRI RIXT (1, 1,,) -

2. [} DUSt3R #EEEA3 £ 55 [l (Pointmap) P, P, -

3. T P AT AT AR DR(Splatting) S AR ALTE Sy, AR R E R K

4. $ZHU DINOV2 F#+1E, TSR ZAHLEAE A —EE 4.

TAEMAL: BT DUSEBR HEHFERT A (XS FERT 29 300 ms), FRATHERA “OCBEMURAE” Heng, (Lt
SN ARG 15 FERIRL RN, LTRSS

4.1.3. LEROAREM . NERHTAESHE S

BFXF 3DGS H W) “BR” 5 “mEiRe " AN

i fr #r 5 % (Laplacian Variance): Var(Vzl) o 1ZAR bR XT B G 7 T v P UK o G 7 22 088 X AR
(BRI KR BRARAL), AR 77 22 H 43 A AN 51 ) o] RSk 7 sy g 75

SEPL: f# H OpenCV A cv2.Laplacian(img, cv2.CV_64F).var()#H 7 s i 5. IR BG4 N 16 x 16
(1) Patch 73 Al HE, LAARRG “BOBIEIIEL (R Re A A= E R o

4.2. B " BERHEBE R R (RAG Module)
RAG MH R LB R R “ICIZE” . BIEMBIRICS 1A B = Do JE v A #E &

4.2.1. MERIEERE
BRI FEE A CLIP, %M Q-Align [27]8% Quality-aware CLIP (QualiCLIP) ) Fii)Il 25 AN =
[28]0 IXLLAAILENG &R IQA Bdft B, HIRASEXT “pia” BHHuk, maEOEeE “BXHNE” .
TAAE%HK . #i ] ChromaDB 77 3DGS-1Eval-15K YIZE M A . AR
Vector: K& QualiCLIP #k A .
Metadata: {"MOS": 4.5, "Artifacts": ["floater", "blur"], "Scene": "Indoor"}.

4.2.2. RERIERRER
LUPA TR, RGEHAT LN RAE:
L AW THEAAIER) QualiCLIP A& .
2. KNN 82 f R E PSRRI & =5 MEAS.
3. BROCH s FREUX S AMFEARR) MOS BMEER “SERM 57, LS EATRINEARE .
AR “ R RD S MR ER, ST R ERS N 3.2 4. R BB
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TEYMRID G P8R A ST S =, EE TS EER, 454 ERER, MR RE. 7
4.3. HEH = SRR EREEET LangGraph 5B4ERHEIER)

ARERAE BN VR R GEHT R HAX, B AR SRR I S AR RE 0, BRI R
FRB AR g R RE 70, I 2 4 EERPAE I AT SCIAIE, SIS R LR AR (s A L BT 5 SO 2k
H AR o« AN F) TG0 o B T 70 A, A2l i (5 IR 25 e 4R 22 R A R B g iE L 1
SEHUA S 21 T R S5 1R 1B WAL HEEE

ET LangGraph FIEERIZREIERE

N1 RGEMARHEIIRE, AR LangGraph HEZZ[29]1#4 8 | — NG [PRZS El(State Graph), LAK
T2 ) 5 B B (R4S B3N 5 DRSO . 1ZIRAS BlE ST —BURRASE5 1, B3 B ERAT . BRI S .
KR BRI IR K AT A RAE R IT R, RS A TR AR /R — BB Y
U E AR

FEULEER b, RGBT T HANTHRET A, RIK S BN R IR N B 25K A B Hh i o B HE P . 35— A
SN AL, B RTURR B 18 AR R A O TE UL EARE AR, NS SEIE S A R
5 TR LR UE R, B, “MEGR 558 0.85, KRGS LAEMBAARRF R o 22
R, HAT S RAG BEE, TEON R RN i 2 T Y il R A N A TR 22, R A G &
FhE 5 RERREAAER R ocrh, BsR R G000 WELE RO R Re 7). SRR AL X
FRWEZ O, KA T BN SRR BT 2 RIFATIR R . W RN B R — S5, R4 REA
R R TR S, M T — 8t . SRR AR BB A 2 By 5B S 4R FE A o I R B DY
HEFIT R S0t B R BN, X HERE 23 S S — B AT AR . B, MR AR AR R T
2R B AL S50 3 VP 2 BB AR I, A% s Al R T JE RN, 515 R G T AR B A AR B T AR
PEo BERHH T AL BEPTEHEEIEE, AR MR AP, R LEE RV FEREIRA,
FRIR A3 BT R St A, 3 R Tk R34 I T L AT R I 7 R

Figure 1. Engineering architecture and multi-stage data orchestration for agentic-IQA systems

1. Agentic-IQA R TIZRM S SRR REE

B RGN EE R, Kzl TREH 8 =R B &A1 /K Zi(Perception Pipeline):
Fgulid 2 8887 PSR B AR Y BRFIE . H 455 T DUSBR ) MEGR JUAT— S0 2
YRGS PR T ZE CEE R S ABORT) L B AR G IR FURE TR bR . X B8 E BRFAEAL L 1 HEEE 5] S BN
ANFEfilhe 101738 55 BT (Retrieval-Augmented Unit): %570 7 57 ES S AR EL . A QualiCLIP Zwhd
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ORI AT R, E TR 2R () 3DGS-1Eval-15K IR B S 28 S % Rk FURFE S AR BL I 281, AT
NS HE VAR AL SIS " 45 /4 P 3R PR HX (Reasoning Engine): IX /& R 4 8 45 4% 0» . 3 T LangGraph
REWGmHE, ARG BLER (ToT) [30THEZL R B H =AML I8 05 JUAALA . QU A S e i
iAo JERE 2 BB SRR SHEAT S, 2R G0t 20 H L 2% e DR AR e PR B BV o S 2 W A L

4.4. FRHERIRERNAY S UL AHEIRLF

FEHMERRNS S, RGUR B M BLHIT e 2 BAREBU A BS TPAl . Bk, BRI f i =4 H
A WIS SRR R HERE ) S JUATAILA 20 SCHE R ORTE MEBR FEE S R S ) R BRI — Bk, A TH
TR TR A AE R T 0 AT SRR L R W SR L S AR ) T LA A s SO A O SOREE T R RS B 5 R
OPARRFAE, PEASROR . P8 Bt S R O B s D AL A 70 SCR T HE RAG A 3R (] 1 S8 78 2R B
SEB, R R R TR SRR E DR .

T SCMSTAE AT PTG, RGARE B R (IR PRoR AL . AR ULHRC L J2 ) #5084 — Bk A
YUE)HEAT DB BB R . 10, 37 ME3R 73 $08 i FLIRBE BT, U0 LT R AR 20 S AR A7 ) W A =
% xz, HEADDCEFRAF - RMERI, WARGRKIEIMZA R E. &%, Sty SisiE
Je B BRI HE PR AR A6 At AR

ERHLEIARTE T ARG HE R ZENZMERANMITEES, EWRF 7B RN
K “ BB - 2L - RBMEIE” BAEIREE, IR CRIE s HER R A RIS, R E o 7 451
AT R MR A5 L

5. SRS SEIE SR
5.1. SCIR B SEOEXIEE

AW FAE 3DGS-IEval-15K MHREE FTF /B RGiEsea, DAATH Al BT H (1) Agentic-IQA J7iEAHE: T
A B AR EREI A AR RVPAL I AT P 5 AT, RATIEE 7 =R A RE MM iE 5t .

1415 2% B R B IFE(NR-IQA)fE 47, 4% NIQE 5 BRISQUE. I 7k%ET ARG S it
B, ANRH SR, (B 45 P = 2 Rk Bk = MU

FETF VR 2 SR IQA #5AY, i#i55% HyperIQA [31]. MANIQA [32]5 TReS [33]& M EM L. X
A R ) P 2 A A 28 X 4% B AL 5. Transformer Z844[34], 78 KB EE S5 b2 o) N SSEnai e, BEm
EUG R VPN AT S5 R IR 5, {HAE 3D A 1 N 2845 16 LRI Bl 52 R0 7 T AR AE R PR

A AR AL IR h 1 R B VP4l 77, B35 Q-Align [27]. Q-Bench [35]5 DepictQA [36]. HH1, Q-Align
VBN 2R AU ) B S #E 77 15(SOTA), i K 2 A A A5 A S 3 o 319 5T B2 4T 73 : - Q-Bench #2144t 77— 4>
AR E P HESE s DepictQA M 2531 it BUE A 5] 5 5 & #I W1 Agentic-IQA £ PLCC 5 SRCC ¥
iRz O Febs L3 B E R T 34 7. FAAKT 5, Agentic-IQA 7E 34K 4 _F LS 0.892 () PLCC Al
0.876 ] SRCC, %247 SOTA J77% Q-Align (PLCC = 0.831, SRCC = 0.814)%3 A7t 6.1 F1 6.2 NE %
Mo TELTTE U — SR PR S R . AR Eh 5 IR A, 3t 3210 skEHR) I,
Agentic-IQA [ PLCC iA %] 0.864, 1 Q-Align A 0.752, ZHH KZE 11.2 ANE 3. X— 4R 0AE
T 235N MEGR J U FE &5 BIHEBEL 610 = 4 Oy 52050 i 2o

5.2. jHRASCIE

RISAIE S AZ O LA B AR MR BE R Tk, A SCBETE T = 4L mhs e
FEBRAG R B s AR B (w/o RAG), AN HH AT 5 1Y i PN S gk AT HE R . 7E L BEE N, #4A PLCC
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ke, 5 IEH]

Pz 0.841, JUHAEAE IO (andE H A7 s e 75 BUR & B A8 74 |, SRCC H 0.876 % 0.803,
TSI ENE N T B AL RE ) 28 O F 2

B MEGR JUAT— St fEbR(w/o MEtR), 1WA —4E7E G RUGAE NN . 228 K7 TR 1L 74 F
) PLCC JRI% % 0.728, BEEBATIE 13.6 MH A, MASELRML 758 BT 21 MES AL 3
ME3R St J LA 2k 3 (4 40 1) B A AN T B AR IR A

Ft JLYE 4 (Tree of Thoughts, ToT)HEERAL ] & 4 Fyhn itk 1) J 4 4% (Chain-of-Thought, CoT)3##%(w/o ToT).
I LAY EE AR PLCC 9 0.857, HAEE FFEANH I E 2 8 A — 20 P 7 (Wis MEGBR EIRH 24450, A
T A R INZ 18.3% M) R BIAFIE B BAEFLT &, 1 e B AN L BN 5.7%, TESE ToT HLIA BEET T
HERR & e S — Bk .

53. RIS E RS

it SR RGN TAEN R S aRER A, A SRR F PN B REIHEATIR A . S A
RAE CRMMERIT” LRED “HEFRFARE” ). SEEGH — K PSNR =iA 32.4 dB {HAFLE B ARV s R (TR YL I
1% . 438 FR NIQE (4.12). BRISQUE (28.7) &% Q-Align (Tiill MOS =4.2/5.0)%)45 & =1y, 1 A 2K MOS
109 2.8, Agentic-IQA i PR i Blsr il 2K AL i i s R EEBRER > 0.3 m HELIE 12.7%), I RAG
FREE PR R B 3 A BEAH LA 7 s 7S RGN (AHBLEE > 0.89),  $Re AR UK /3 VFHI (I MOS = 2.9), 5
FEMIT mE 8 A IAREE . AR R ETR A, IR RETIEY o R B SRS S L
] Jot PR BT I . SR B MR SO % (R Rl 7 2 = 186.5, & T-FIME 152.3), {H MEtR 734
XA 0.61, RMJUFIGEMAEEREN . 1€ ToT #HEFLEfES,  “JUTHM” 2 X EEREIE 092, @& T “4C
FERLA " (0.48)5 “OHFEANA 7 (0.35), RGIAHE : “ TG SCHRTEM, () LA 4544 Wr 7™ B 52 e K7,
g5 th MOS =3.1 (AFK MOS =3.0), =St 7 NN =4 N 2 B & %0 ok ).

5.4. BURSHTE

NE BV R, ASCRA LR Geit i i 156, TR 4 505 AN 281 EWE 4 (MOS)
Z ) [ B IR DR PR AR G R EL(PLCC) B F7 /R 2 R AH K R EU(SRCC) S H 8 /R BRAH ¢ R EU(KRCC). LI 45 R
7R, Agentic-IQA 7E 445 FHUE PLCC=0.892. SRCC=0.876. KRCC=0.841, =if&hnti i 4503k
2k, HR, KM F KX Agentic-IQA 5 Q-Align 7£ PLCC L% F3 T4t B & i, 158 E KT
=001, F(1,15198) =218.6, p <0.001, KM RFRERITREM,. &5, BEELH MOS
G FI 43 s AT PTARAL 23T . Agentic-TQA IR A1 S 3 TREE T XA LRI (R? = 0.796), Bk %5
5], RIWARGME S BRE . M2 T, Q-Align /£ MOS [XI8(<3.0)/77E B B = i w2, 3 —
A ENIE 1 0] 7 5 O 5 IO BURPEAS 22

gr b, RIS AT, BE o S gt R IR It E R R — AN 2 4RI A R, 78U Agentic-
IQA TEAERAVE. B M S AT R T T 2R S I

6. &g

AR B 7 = 4 A A A FR(ATGC-3D) M i 2 e B 4 1 17 2. 3K 3D i ik (3D Gawussian Splatting,
3DGS)EARTEEERE , F1xF UL 51 R HIB R A PEOY S (s K . EHIRIETAZ L WL IR 5 7 e R )
it S BUAL GG B PP R R R, - T — R R A RN RIS IR RE 0 2 RS R RE 1A
Pl RG——Agentic-IQA. ZRGR J WA THELE “iE 0”7 ERRAR R, AL T X 3DGS
AMNER R, FERERE S, EATTRRZIRR T AL GEMREh A BTRE PP A “ R ILAC”
] “EE R PR BEEER R AT
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Mk, S

BARME, AR ESME 7 MES . fiE S BE R 2 RSB EaE 4, TRt
TR TCEAR A . AR SR AT 55 TU A P S0 B AR B AR AL TIAL BRIRERE . A R G it i
AL fEhZ |, Agentic-IQA i — JZ i [F) 2204 S E o 2 3 (1) VR & VRAL . BNE 51N MEt3R JL
o] — SRS &, A Sl T AL S dabn o IR A (0 = 4 2540 K 1 D2 2 5E T CLIP/SigLIP #k N (Al #4 RAG
KR, fRULT S 2 VPl S B0 Be ( in 8s A %02 0637 P Hh 45 & LangGraph JIRZS B 5 BYER (Tree
of Thoughts)fEFEHLE, [ RGREWHBAUNR LR “ME - ik - Bk - A" 158 B INHTER.

SEEG S5 IR R B, Agentic-IQA E 3DGS-1Eval-15K #lli{4E U3 PLCC=0.892. SRCC=0.876 1 fE,
BEMR T 4 it % Q-Align (PLCC = 0.831), JoHAE JUTIEML T4 EARA T AR E(PLCC #IHE
112 NED ). MR E—BIIE T ME3R. RAG 5 ToT = K% ORI ElE . BT — Ry
SEERE B TR, b AR RE B R R S5 R D s A R e R O . MR A T U R R T R
granfriaid 2 A HERL U R R BEBE, ARG JLA B SR AR A NSRRI S g
A B

ZELRTR, AN 3D m RIS B AR AR T A B LA BN RE 7 5 R SR AT AR R
PER R E VAL TR, SE R R 2 REYMES S HEEE SN TIQA 453, HES) T ITALTE
L B IR0 ) L A P B A AR S R R VA DR B O B S AL VA O R . ARSCRTIR I “ SR BRAR T HF
i RG] 3DGS FrA JUT RS Z ML — SRR, 2R 5 8GR . KRR TEKHEZE 3D
Yt ZREE RO S 3D)EEZ AT, HRR I RG-S E SR 1 IR AL, DASCHE TR
—RAE . AT, AR AIGC-3D AR K E .
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