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摘  要 

本文针对复杂优化问题中单一群智能算法普遍存在的“探索”与“开发”难以平衡的问题，提出了一种

基于周期性评估与自适应切换的自适应混合进化算法(AHEA)。该算法融合了遗传算法(GA)的全局探索

能力和鹦鹉优化算法(PO)的局部开发优势，通过周期性评估算法性能改进率，并依据设定阈值在GA与PO
之间自主切换，实现了算法间层面的智能调度。实验部分在经典基准函数、高维多坑洞Shekel系列函数

以及现代IEEE CEC 2022复杂复合函数共10个测试问题上，将AHEA与纯GA、纯PO进行系统性对比。结

果表明，AHEA在收敛精度、优化速度、稳定性与鲁棒性方面均表现出显著优势，验证了其在动态平衡探

索与开发、有效应对各类复杂优化问题上的先进性与实用性。 
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Abstract 
This paper addresses the common challenge of balancing “exploration” and “exploitation” in single 
swarm intelligence algorithms for complex optimization problems by proposing an adaptive hybrid 
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evolutionary algorithm (AHEA) based on periodic evaluation and adaptive switching. The algorithm 
integrates the global exploration capability of the Genetic Algorithm (GA) and the local exploitation 
strength of the Parrot Optimization Algorithm (PO). By periodically evaluating the performance im-
provement rate and autonomously switching between GA and PO based on a predefined threshold, 
it achieves intelligent scheduling at the inter-algorithm level. In the experimental phase, AHEA is 
systematically compared with pure GA and pure PO across ten test problems, including classical 
benchmark functions, high-dimensional multimodal Shekel-series functions, and modern IEEE CEC 
2022 complex composite functions. The results demonstrate that AHEA exhibits significant advantages 
in convergence accuracy, optimization speed, stability, and robustness, confirming its effectiveness 
in dynamically balancing exploration and exploitation and its practicality in addressing various 
complex optimization problems. 
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1. 引言 

复杂优化问题的求解是科学与工程领域的核心挑战。近几十年来，群智能优化算法作为一种受自然

群体行为启发的随机搜索方法，因其实现简单、鲁棒性强和不依赖梯度信息等优点，已被广泛应用于诸

多领域[1]-[8]。例如，遗传算法(GA)模拟生物进化中的选择与变异机制[1]，粒子群算法(PSO)仿效鸟群协

同觅食[3]，鹦鹉优化算法(PO)等新颖算法也相继被提出[5]-[8]。这些算法在函数优化[5]、特征选择[8]、
路径规划[9]等实际问题中取得了成功[10]。然而，尽管种类繁多，单一群智能算法在应对复杂问题时，普

遍面临“探索”与“开发”难以平衡的根本性挑战。以 GA 为代表的算法全局探索能力强，但局部开发

效率低、收敛慢；而 PSO、GWO 等算法虽局部收敛快，却易陷入局部最优且稳定性对参数敏感。这种固

有的能力失衡限制了它们在更复杂场景下的性能。 
为融合不同算法的优势，混合策略应运而生。与此同时，自适应机制的研究为算法自我调优提供了

新思路。其中，参数自适应取得了显著进展，例如自适应差分进化(JADE)能动态调整其内部参数以提升

鲁棒性[11]。然而，这类工作大多仍局限于单一算法框架内部进行组件优化[12]。在更高层次的、跨算法

范式的自适应策略调度方面——即如何根据实时反馈，在全局探索型(如 GA)与局部开发型(如 PO)等原理

迥异的完整算法之间进行智能切换——研究尚不充分，且缺乏通用、鲁棒的在线决策机制。 
针对现有混合算法缺乏动态调度能力的问题，本文提出一种基于周期性评估与自适应切换的混合进

化算法(AHEA)。其核心创新在于实现算法间层面的智能调度，而非仅优化内部参数。AHEA 以遗传算法

(GA)为起点，通过周期性评估性能改进率，并依据高阈值自主决策在 GA 与鹦鹉优化算法(PO)之间切换，

动态协调全局探索与局部开发。为全面验证算法性能，我们在包含经典基准函数、高维多坑洞函数及 IEEE 
CEC 2022 复合函数在内的 10 个测试问题上，将 AHEA 与纯 GA、纯 PO 进行系统对比。实验从收敛精

度、速度、稳定性与鲁棒性多维度证实，AHEA 在求解复杂优化问题上具有显著有效性与先进性。 

2. 混合进化算法的设计 

本文提出的自适应混合进化算法(AHEA)有效融合了遗传算法(GA)的全局探索能力与鹦鹉优化算法
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(PO)的局部开发优势，其核心在于引入基于周期性评估的自适应切换机制，能够依据不同搜索阶段的性

能表现动态调整优化策略，实现两种算法的协同互补。算法设计遵循三大原则：一是维持探索与开发的

动态平衡，前期利用 GA 广泛勘探解空间，后期借助 PO 深度挖掘潜在最优区域；二是建立基于量化指标

的自适应决策机制，通过周期性评估动态决定切换时机，避免传统混合算法固定切换的主观局限；三是

设计信息继承机制，确保切换过程中关键信息得以保留与传递，保障搜索连贯性与效率。 
自适应切换机制在每周期结束后触发，计算性能改进率 ( ) f_start-f_end /f_startη = 并与阈值θ 比较：

若η θ> 则延续当前算法，否则切换至另一算法，从而实现基于反馈的灵敏策略调整。为保障切换后搜索

的连续性，采用信息继承机制将当前最优个体融入新算法初始种群，避免优良基因丢失，加速收敛进程。

此外，算法内部参数(如 GA 的交叉变异概率、PO 的学习因子与惯性权重)具备自适应调节能力，进一步

增强算法在不同问题中的鲁棒性与稳定性。 
为具体实现 GA 与 PO 算法间的自适应切换，并确保搜索过程的连贯性与效率，AHEA 设计了一套

精细的编码转换与状态继承机制。该机制在每次触发切换时执行，无论从 GA 切换至 PO，还是从 PO 切

换回 GA，切换操作的第一步是保留当前算法种群中的精英知识。GA 与 PO 均采用实数向量编码直接表

示解，因此个体在算法间转移时无需编解码转换，确保了信息的无损传递。GA 的核心参数(如交叉概率、

变异概率)和 PO 的核心参数(如学习因子、社交权重等)不直接跨算法继承，切换意味着开启一个全新的

搜索阶段。因此，目标算法的迭代计数器、内部记忆等状态变量将被重置。唯一保留的“状态”就是精英

个体所代表的当前最优解的知识。通过上述机制，AHEA 的切换实现了一个有记忆、有导向的策略转换。 

3. 自适应参数策略设计 

在自适应混合进化算法设计中，初始策略、切换阈值与评估周期共同构成核心参数体系，对算法性

能具有决定性影响。为科学确定最优参数配置，本研究设计了系统性对比实验，选取 Sphere (30 维单峰

函数)、Rosenbrock (30 维非凸函数)和 Shekel’s Foxholes (2 维多峰函数)三类地貌各异的基准函数进行全面

评估。 
实验针对三个关键参数设置多水平对比：初始算法包括 GA 和 PO 两种策略；切换阈值设定为 0.001、

0.01、0.1、0.5 四个等级；评估周期长度设置 50、100、200、500 代四个等级。采用全因子实验设计，共

形成 32 种参数配置组合，每种配置均在三个测试函数上独立运行 30 次以确保统计可靠性，从而系统分

析参数影响并确定最优自适应策略。下文首先从初始算法选择展开讨论。 

3.1. 初始算法选择 

基于上述实验框架，首先分析初始算法的选择对算法性能的全局性影响。在自适应混合进化算法的

设计中，初始算法的选择对算法的整体性能、稳定性和鲁棒性具有重要影响。为科学确定最优的初始算

法策略，本研究对两种具有互补特性的初始方案进行了系统的对比实验：一种是以遗传算法(GA)为起点，

该算法通过选择、交叉和变异操作擅长全局探索，利于在搜索初期建立种群的多样性；另一种是以鹦鹉

优化算法(PO)为起点，该算法模拟鹦鹉群智能行为，在局部开发与精细搜索方面通常表现优异。这两种

策略(GA 起始和 PO 起始)分别有 16 种参数配置方式，每种方式在每个函数上独立运行 30 次得到了最终

适应度的平均值，通过评估两种初始算法在三个代表性测试函数上的表现，选择出效果最好的初始算法。

实验结果如表 1 所示。 
通过表 1 数据分析发现，在 Sphere 与 Rosenbrock 函数中 PO 初始结果较优，但在多峰复杂的 Shekel’s 

Foxholes 函数中，GA 作为初始算法成功获得理论全局最优值(9.98E−01)，而 PO 最优结果(1.04E+00)未
能达到该精度。这表明在处理多峰、多局部最优问题时，GA 的全局探索能力具有不可替代性。算法初始
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阶段的核心目标在于广泛探索解空间，为后续开发建立多样化种群基础，而非追求局部收敛速度，而 GA
的选择、交叉与变异机制天然符合探索与多样性保持的需求。 
 
Table 1. Performance comparison of test functions under different initial algorithms 
表 1. 不同起始算法下测试函数上的性能对比 

函数 GA 最优结果 PO 最优结果 GA 最差结果 PO 最差结果 

Sphere 1.07E−05 7.07E−07 2.57E+02 3.12E−05 

Rosenbrock 6.77E−02 9.13E−03 6.18E−01 9.60E−02 

Shekel’s Foxholes 9.98E−01 1.04E+00 1.03E+00 1.48E+00 
 

因此，选择 GA 作为初始算法是基于系统性权衡：其卓越的全局探索能力与稳定性确保了在最复杂

问题中仍能获得可靠解，避免了 PO 可能引发的搜索失败风险。该选择为后续自适应切换机制提供了高

质量的初始种群，成为算法整体强鲁棒性的基础，后续参数优化均将基于这一稳定起点展开。 

3.2. 自适应阈值判断 

在自适应混合进化算法中，切换阈值(θ )是控制算法策略转换的关键决策参数，它定义了算法在一个

评估周期内需要达到的最小相对改进率。其决策逻辑可形式化表示为： 

Current algorithm, if 
Next stage algorithm =

 Alternative algorithm, if 
η θ
η θ
>

 ≤
 

其中，为周期改进率。阈值θ 的本质是算法对自身阶段性搜索效率的满意度标准。较高的阈值意味着算

法要求每个周期必须有显著的改进才会维持现状，否则将尝试改变策略；较低的阈值则使算法对微小的

改进也感到满意，从而更倾向于维持当前搜索方向。 
为探究阈值对算法行为的塑造作用，并确定一个普适的最优值，本研究在已确定以 GA 为初始算法

的基础上，设置了四个差异显著的阈值水平：0.001 (极低)、0.01 (低)、0.1 (中)、0.5 (高)，结合不同的评

估周期长度，在三个测试函数上进行了全面的性能评估。 
不同阈值下算法在三个测试函数上的性能表现如表 2 所示(以评估周期 L = 100 代为例，该周期在初

步分析中展现出良好的平衡性，其优选依据将在 3.3 节详述)。 
 
Table 2. Performance comparison of test functions across different thresholds 
表 2. 不同阈值下测试函数上的性能对比 

阈值 Sphere Rosenbrock Shekel’s Foxholes 

0.001 7.38E+01 2.50E−01 0.9980038 

0.01 2.29E+01 2.67E−01 0.9980038 

0.1 2.11E−04 1.61E−01 0.9980038 

0.5 2.83E−05 6.77E−02 0.9980038 
 

针对单峰 Sphere 函数，PO 的局部开发效率固有优于 GA。高阈值机制使算法在初期若 GA 改进不足

50%时迅速切换至 PO，形成高效的元学习过程，快速锁定 PO 作为最优策略并执行深度开发。低阈值则

因容忍 GA 的微小改进，易使算法滞留低效阶段，错失收敛良机。对于复杂 Rosenbrock 函数，高阈值(θ 
= 0.5)带来显著性能突破，最终适应度达 6.77E−02。这表明其“无显著进展即切换”的激进策略能有效打

破 GA 在复杂地形中的渐进僵局，通过强制引入 PO 实现局部精细开发，从而找到逃离局部最优、逼近全
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局最优的关键路径。在多峰狐洞函数中，所有阈值下以 GA 起始的策略均能稳定找到全局最优，印证了

初始算法选择 GA 的正确性。同时表明，在 GA 完成初期全局探索后，阈值在 0.001~0.5 范围内均不影响

最终成功率，高阈值同样具备可靠性能。 

3.3. 周期性判断与策略调整 

评估周期长度(L)作为连接连续进化与离散决策的关键参数，其核心在于平衡评估充分性、决策时效

性与执行连贯性。周期需足够长以获取可靠性能趋势，避免短期波动导致误判；又需足够短以确保及时

响应性能停滞，减少计算资源浪费；同时还需保障算法连续运行的连贯性，以充分发挥其固有搜索特性。

为寻求最优平衡点，本研究在已确定初始算法(GA)与切换阈值(θ = 0.5)的基础上，对比了 L = 50 (短周期)、
100 (中等周期)、200 (长周期)、500 (超长周期)四种显著差异的周期长度，以系统揭示评估周期对算法性

能的塑造规律。 
基于实验结果，表 3 集中展示了在 GA_0.5 的设定下，不同评估周期长度对算法在三个测试函数上性

能的影响。 
 
Table 3. Ranking comparison of test functions across different evaluation periods 
表 3. 不同评估周期下测试函数上的排名对比 

周期长度(L) Sphere Rosenbrock Shekel’s Foxholes 综合排名(总和) 

50 1 2 4 2 (7) 

100 2 1 1 1 (4) 

200 3 3 1 2 (7) 

500 4 4 1 4 (9) 
 

基于表 3 数据，评估周期 L = 100 在所有配置中综合排名最优，展现出卓越的跨问题鲁棒性。该设置

在 Rosenbrock 与狐洞函数中均列第一，在 Sphere 函数中排名第二，体现了其性能的均衡性。L = 50 因周

期过短导致频繁切换，破坏算法连贯性，在狐洞函数中表现最差；L = 100 则能在保持决策响应性的同时，

为算法提供约 100 代的连续搜索窗口，兼顾全局探索与局部开发，从而在复杂地形中取得最优效果。相

反，L ≥ 200 时响应滞后明显，易造成计算资源浪费，导致收敛精度下降。 
实验表明，周期过长(L ≥ 200)会降低响应效率，周期过短(L = 50)则破坏搜索完整性，L = 100 被证实

为实现探索与开发动态平衡的最佳选择。结合前期研究，最终确立算法核心参数为：以 GA 为初始算法、

100 代为评估周期、0.5 为切换阈值。该配置以绩效驱动实现深度搜索与敏捷决策的协同，为复杂优化问

题提供了高效鲁棒的求解框架。 

4. 对比试验分析 

本文的对比实验体系在测试问题的选取上，遵循全覆盖、分层级的原则，旨在系统性地评估算法在不

同地貌、维度与复杂度下的性能。所选的 10 个测试问题(4 个经典基准函数、4 个高维 Shekel 系列函数、2
个 CEC 2022 复杂复合函数)构成了一个严谨而全面的评估基准集。在问题特性(单峰、多峰、复合、低维、

高维、对称、旋转、混合)和挑战层级(基础开发、全局探索、维度扩展、欺骗性地形、复杂复合结构)上实

现了全面覆盖。这些具有高度代表性的 10 个测试问题，能够更高效、更清晰地证明所提算法(AHEA)相对

于对比算法的核心优势与普适性，同时避免了因测试函数数量过多而可能导致的结论焦点模糊。 

4.1. 经典基准函数 

为全面评估自适应混合进化算法(AHEA)的性能，下面选取了四个具有不同地貌特征的经典基准函数
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进行对比实验，包括 Sphere、Rastrigin、Rosenbrock 和 Shifted Rotated Ackley (SRA)函数。每种算法(纯遗

传算法 GA、纯鹦鹉优化算法 PO、火鹰优化器 FHO、䲟鱼优化算法 ROA 以及本文提出的自适应混合算

法 AHEA)在每个函数上独立运行 30 次，得到的结果如表 4 所示，其中加粗数值表示在 α = 0.05 水平下

具有统计显著性优势。 
 
Table 4. Performance comparison of five algorithms across four classic benchmark functions 
表 4. 五种算法在四个经典基准函数上的性能统计对比 

函数(算法) 平均值 标准差 最优值 最差值 中位数 

Sphere (GA) 65.78E+00 15.99E+00 37.79E+00 94.91E+00 66.56E+00 

Sphere (PO) 1.99E−05 9.89E−05 4.37E−13 5.41E−04 3.73E−09 

Sphere (FHO) 7.04E−07 1.49E−08 6.30E−13 2.11E−05 4.95E−08 

Sphere (ROA) 7.25E−03 1.43E−03 3.97E−05 2.07E−02 2.34E−05 

Sphere (AHEA) 2.25E−07 1.08E−06 1.55E−14 5.92E−06 7.12E−09 

Rastrigin (GA) 130.67E+00 14.92E+00 101.31E+00 169.61E+00 132.07E+00 

Rastrigin (PO) 1.03E−05 3.67E−05 1.71E−12 1.97E−04 3.79E−08 

Rastrigin (FHO) 1.26E−04 1.85E−06 2.89E−05 6.59E−03 1.34E−04 

Rastrigin (ROA) 9.17E−05 7.20E−06 1.17E−06 3.20E−03 1.73E−04 

Rastrigin (AHEA) 5.88E−08 1.28E−07 3.41E−13 4.42E−07 3.89E−09 

Rosenbrock (GA) 5.46E−01 1.41E−01 3.75E−01 8.93E−01 5.02E−01 

Rosenbrock (PO) 3.94E+00 4.77E+00 6.08E−03 13.70E+00 1.08E+00 

Rosenbrock (FHO) 1.68E−01 1.26E−02 4.24E−03 4.89E−01 1.45E−01 

Rosenbrock (ROA) 7.12E−02 1.51E−02 1.67E−04 5.24E−01 3.22E−02 

Rosenbrock (AHEA) 2.55E−03 2.93E−03 1.56E−05 9.39E−03 7.32E−04 

SRA (GA) 1.89E+00 2.84E−03 1.22E+00 2.51E+00 1.86E+00 

SRA (PO) 5.17E−05 1.48E−04 1.24E−07 8.11E−04 1.19E−05 

SRA (FHO) 3.98E−04 7.80E−08 1.28E−05 9.97E−04 3.16E−04 

SRA (ROA) 1.17E−04 2.09E−08 4.34E−06 7.07E−04 6.62E−05 

SRA (AHEA) 2.84E−05 5.12E−05 1.28E−07 2.51E−04 6.87E−06 

注：加粗表示在 Friedman 检验及事后 Nemenyi 检验中，该算法的平均表现显著优于其他算法，显著性水平 α = 0.05。 
 

在经典基准函数测试中，AHEA 算法展现出全面优势。对单峰 Sphere 函数，AHEA 平均精度达

2.25E−07，较纯 PO 提升近两个数量级，且标准差更低，表明其通过 GA 全局定位与 PO 深度开发的智能

切换实现了精度与稳定性的平衡。在多峰 Rastrigin 函数中，AHEA 平均精度为 5.88E−08，比 PO 提升三

个数量级，其自适应机制能有效感知停滞并切换至 GA 重启探索，增强了跳出局部最优的能力。在复杂

Rosenbrock 函数上，AHEA 以 2.55E−03 的平均值显著优于 PO 的 3.94E+00，且标准差极低，体现了算法

在欺骗性地形中的卓越鲁棒性。在平移旋转 Ackley 函数中，AHEA 同样在均值、中位数及标准差上全面

优于对比算法。在这三个测试函数上，AHEA 的适应度均优于其余四个算法。 
实验数据从三个维度验证了 AHEA 的优越性：精度上其平均值与最优值全面领先；稳定性上所有函

数的标准差均为最低；鲁棒性上成功克服了 PO 在复杂地形中可能失效的缺陷。这表明 AHEA 通过智能
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自适应调度实现了 GA 与 PO 的深度互补，为复杂优化问题提供了强大可靠的解决方案。取每次运行的

最佳适应度曲线，并将同一函数的 5 条最优收敛曲线绘制在同一图中进行对比分析，分析结果如图 1 所

示。 
 

 
Figure 1. Comparison of convergence curves of five algorithms on basic test functions. Subfigure (a) corresponds to the Sphere 
function, (b) to the Rastrigin function, (c) to the Rosenbrock function, and (d) to the Shifted Rotated Ackley function 
图 1. 五个算法在基础测试函数的收敛曲线对比。其中图(a)是 Sphere 函数，图(b)是 Rastrigin 函数，图(c)是 Rosenbrock
函数，图(d)是 Shifted Rotated Ackley 函数 
 

图中的结果显示，本文提出的自适应混合进化算法(AHEA)在四个函数地貌上均取得了更优的平衡：

它融合了 PO 算法快速的初期收敛能力与 GA 算法稳定、深入的搜索特性，从而在所有测试函数上实现

了更快的收敛速度与更高的最终精度。 

4.2. 高维 Shekel 系列多坑洞函数 

为深入评估算法在具有大量局部最优陷阱的复杂高维问题上的性能，本节选取了经典 Shekel’s Fox-
holes 函数的系列高维变体作为测试基准，包括 2 维、5 维、7 维与 10 维版本。该类函数通过在搜索空间

中构造大量非均匀分布的“坑洞”(局部最优点)，其多峰、非对称的特性对算法的全局探索能力、局部逃

离能力以及在高维空间的搜索效率提出了极为严峻的挑战。随着维度的提升，局部最优的密度与搜索空

间的体积呈指数级增长，算法的寻优难度急剧增加。 
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实验沿用与 4.1 节相同的对比框架，将舞棍不同的算法在上述四个高维 Shekel 函数上进行对比，每

种算法在每一维度上均独立运行 30 次，得到的结果如表 5 所示，其中加粗数值表示在 α = 0.05 水平下具

有统计显著性优势。 
 
Table 5. Statistical performance comparison of five algorithms on four Shekel series functions 
表 5. 五种算法在四个 Shekel 系列函数上的性能统计对比 

函数(算法) 平均值 标准差 最优值 最差值 中位数 

2D (GA) 4.72E+00 5.07E+00 0.998004 17.37E+00 1.95E+00 

2D (PO) 1.56E+00 5.50E−01 0.998031 2.79E+00 1.44E+00 

2D (FHO) 1.57E+00 6.92E−01 9.98E−01 4.69E+00 1.09E+00 

2D (ROA) 1.01E+00 8.97E−03 9.98E−01 2.56 E+00 9.98E−01 

2D (AHEA) 0.99901 2.03E−03 0.998003 1.01E+00 0.998130 

5D (GA) −6.52E+00 2.99E+00 −1.02E+01 −2.59E+00 −5.07E+00 

5D (PO) −5.04E+00 8.39E−01 −7.19E+00 −3.43E+00 −4.97E+00 

5D (FHO) −8.99E+00 1.96E+00 −1.00E+01 −4.91E+00 −9.46E+00 

5D (ROA) −1.02E+01 5.54E−06 −1.02E+01 −1.01E+01 −1.02E+01 

5D (AHEA) −9.73E+00 4.28E−01 −1.02E+01 −8.80E+00 −9.88E+00 

7D (GA) −3.84E+00 2.64E+00 −1.04E+01 −9.94E−01 −2.76E+00 

7D (PO) −5.19E+00 7.26E−01 −8.32E+00 −4.72E+00 −4.98E+00 

7D (FHO) −9.71E+00 1.16E−01 −1.03E+01 −8.83E+00 −9.75E+00 

7D (ROA) −9.85E+00 1.51E−03 −1.04E+01 −9.56E+00 −1.01E+01 

7D (AHEA) −1.03E+01 1.12E−01 −1.04E+01 −9.95E−01 −1.03E+01 

10D (GA) −3.97E+00 2.66E+00 −1.05E+01 −1.29E+00 −2.84E+00 

10D (PO) −4.91E+00 2.03E−01 −5.12E+00 −4.26E+00 −4.96E+00 

10D (FHO) −9.70E+00 1.53E−01 −1.04E+01 −9.01E+00 −9.69E+00 

10D (ROA) −1.05E+01 2.38E−06 −1.05E+01 −1.01E+01 −1.05E+01 

10D (AHEA) −1.05E+01 9.81E−06 −1.05E+01 −1.02E+01 −1.05E+01 

注：加粗表示在 Friedman 检验及事后 Nemenyi 检验中，该算法的平均表现显著优于其他算法，显著性水平 α = 0.05。 
 

在高维 Shekel 系列函数测试中，AHEA 算法在所有维度上均显著优于其他四个对比算法。从 2 维到

10 维，其平均值持续逼近理论全局最优(−10.5364)，而 GA 与 PO 的结果停滞在−5 至−4 区间，显示出

AHEA 卓越的高维寻优能力与维度扩展性。算法在全部测试中标准差极低(10 维时仅 9.81E−02)，且最差

解仍保持高水平(−10.14)，表明其具有高度重复性与工程可靠性，几乎无失效风险。 
面对高维多坑洞函数的双重挑战，AHEA 通过自适应机制智能协调全局探索与局部开发：当 PO 局

部收益下降时切换至 GA 重启探索，当 GA 发现潜力区域时则转用 PO 深度挖掘。该动态调度策略有效

解决了单一算法在探索效率与开发精度间的矛盾，实现了复杂高维空间中性能的全面超越。取每次运行

的最佳适应度曲线，并将同一函数的 5 条最优收敛曲线绘制在同一图中进行对比分析，分析结果如图 2
所示。 

综上所述，在高维 Shekel 系列多坑洞函数这一极具挑战的测试集上，AHEA 算法在收敛精度、稳定
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性、鲁棒性及维度可扩展性方面均展现出压倒性优势。这充分验证了其自适应混合机制在处理现实世界

中高维、多模态、强欺骗性优化问题上的强大潜力与实用价值。 
 

 
Figure 2. Comparison of convergence curves of five algorithms on four Shekel series functions. Subfigure (a) corresponds to 
the 2-dimensional version, (b) to the 5-dimensional version, (c) to the 7-dimensional version, and (d) to the 10-dimensional 
version 
图 2. 五个算法在四个 Shekel 系列函数的收敛曲线对比。其中图(a)是二维，图(b)是 5 维，图(c)是 7 维，图(d)是 10 维 

4.3. 现代 CEC2022 复杂函数 

为进一步验证算法在更具现实复杂性和挑战性的优化场景下的性能，本节选用国际公认的 IEEE CEC 
2022 单目标数值优化竞赛测试集中的两个代表性函数(CEC2022 F8 与 F12)作为评估基准。CEC2022 测试

集融合了非对称、偏移、旋转、混合等多种复杂操作，并引入了不同局部最优区域之间的高度不平衡性，

旨在模拟现实世界中非线性、非凸、多模态的工程与科学优化问题。该测试集对算法的全局探索能力、

局部开发精度、对函数扭曲变换的鲁棒性以及在高维不平坦地形中的持续搜索能力提出了综合性挑战。 
实验沿用前述对比框架，将自适应混合进化算法(AHEA)与纯遗传算法(GA)、纯鹦鹉优化算法(PO)、

火鹰优化器(FHO)、䲟鱼优化算法(ROA)在 CEC2022 F8 与 CEC2022 F12 两个函数上进行性能评估。这两

个函数均设置为 30 维，每种算法在每个函数上独立运行 30 次，总迭代次数为 1000 代，以确保算法有充

分的进化代数来展现其在极端复杂地形中的收敛行为。CEC2022 测试函数的理论全局最优值已知，为量
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化评估提供了精确的基准。实验结果如表 6 所示。 
 
Table 6. Statistical performance comparison of five algorithms on two CEC2022 complex functions 
表 6. 五种算法在两个 CEC2022 复杂函数上的性能统计对比 

函数(算法) 平均值 标准差 最优值 最差值 中位数 

F8 (GA) 2361 138 2221 2737 2341 

F8 (PO) 2445 119 2271 2843 2440 

F8 (FHO) 2440 4250 2230 2856 2440 

F8 (ROA) 2280 9940 2230 2750 2250 

F8 (AHEA) 2280 55 2220 2361 2247 

F12 (GA) 3133 116 3017 3451 3096 

F12 (PO) 3233 83 3040 3365 3246 

F12 (FHO) 3190 2010 3010 3570 3150 

F12 (ROA) 3300 5250 2990 3850 3200 

F12 (AHEA) 2964 14 2940 3006 2962 
 

在 F8 函数上，AHEA 的平均值(2280.77)分别比 GA 和 PO 低约 81 和 165，也低于 FHO 和 POA 的平

均值，更接近该函数的理论最优区域。其最优值(2220.03)也是上面五个算法中最佳的。在 F12 函数上，

AHEA 的平均值(2964.30)显著低于其余四个算法，且最接近其理论全局最优值 2700。这证明在由多个基

础函数非线性复合而成的现代复杂测试问题上，AHEA 的寻优精度优于其余算法。在 F8 和 F12 上，AHEA
的标准差分别仅为 55.09 和 14.19，而其他算法的标准差均是其数倍。极低的标准差意味着 AHEA 在 30
次独立运行中结果高度一致，几乎不受随机初始化的影响。 

取每次运行的最佳适应度曲线，并将同一函数的 5 条最优收敛曲线绘制在同一图中进行对比分析，

分析结果如图 3 所示。 
 

 
Figure 3. Comparison of convergence curves of five algorithms on two CEC2022 complex functions. Subfigure (a) corre-
sponds to F8, and (b) to F12 
图 3. 五种算法在两个 CEC2022 复杂函数上的收敛曲线对比。其中图(a)是 F8，图(b)是 F12 
 

在现代 CEC2022 复合函数测试中，AHEA 算法再次验证了其强大的泛化能力与鲁棒性。面对高度混
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合、旋转、偏移的极端复杂优化问题，AHEA 不仅在收敛精度上超越了传统单一算法，更重要的是，其

表现出的超低方差和极高可靠性具有至关重要的实际应用价值。这证明了本文提出的自适应混合框架不

仅适用于经典及高维多峰问题，在模拟现实世界复杂系统的、结构异构的现代优化基准问题上同样表现

卓越，具备解决前沿复杂优化挑战的潜力。 

5. 结论 

本文提出了一种基于周期性评估与自适应切换的混合进化算法(AHEA)，融合了遗传算法(GA)的全局

探索能力与鹦鹉优化算法(PO)的局部开发优势。通过在经典基准函数、高维 Shekel 系列函数及 CEC2022
复合函数等 10 类问题上的对比实验，AHEA 在收敛精度、优化速度、稳定性与鲁棒性方面均显著优于单

一算法。 
AHEA 的优势源于其智能自适应调度机制，动态平衡了“探索”与“开发”能力。传统单一算法往

往侧重其一：GA 强于探索但开发效率低，PO 精于开发却易陷入局部最优且不稳定。AHEA 通过周期性

评估与高阈值切换构建闭环反馈系统，实时感知搜索状态：当局部改进收益下降时切换至 GA 重启全局

探索，当探索进展缓慢时切换至 PO 进行深度开发。该机制使算法能够自适应调整策略，实现全局广度与

局部深度的最优协同，从而在各类复杂问题上展现出卓越的稳定性与泛化能力。 
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