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Abstract

This paper addresses the common challenge of balancing “exploration” and “exploitation” in single
swarm intelligence algorithms for complex optimization problems by proposing an adaptive hybrid
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evolutionary algorithm (AHEA) based on periodic evaluation and adaptive switching. The algorithm
integrates the global exploration capability of the Genetic Algorithm (GA) and the local exploitation
strength of the Parrot Optimization Algorithm (PO). By periodically evaluating the performance im-
provement rate and autonomously switching between GA and PO based on a predefined threshold,
it achieves intelligent scheduling at the inter-algorithm level. In the experimental phase, AHEA is
systematically compared with pure GA and pure PO across ten test problems, including classical
benchmark functions, high-dimensional multimodal Shekel-series functions, and modern IEEE CEC
2022 complex composite functions. The results demonstrate that AHEA exhibits significant advantages
in convergence accuracy, optimization speed, stability, and robustness, confirming its effectiveness
in dynamically balancing exploration and exploitation and its practicality in addressing various
complex optimization problems.
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Table 1. Performance comparison of test functions under different initial algorithms

= 1 ARSI E A TN iR 8 E A REXT EE

PR3 GA FflLasi R PO L& R GA R4S PO IR ZE4R
Sphere 1.07E-05 7.07E-07 2.57E+02 3.12E-05
Rosenbrock 6.77E-02 9.13E-03 6.18E-01 9.60E-02
Shekel’s Foxholes 9.98E-01 1.04E+00 1.03E+00 1.48E+00

Bk, 8 GA M NVIMRSEERIE T RGMERUE: Heili & RIRR M SR E ik 7Rk
R TS RESRAT AT SEAR, WG T PO AIRESI AR IR R RO . 235 A 82 B G NI S it 1 i
JE AIIAEARE, BONSIR B S MR RO JEA, RSB T X — R e R TT .

3.2. BiENE{EFIH

75 B IEROR G AL, VI BRME(0) 2 ) BE SRS Fea M O RS HL, e LT SR —A
DA T P9 5 K B R e AR B AR . R SR R R R
Current algorithm, if > 0

Next stage algorithm = . . .
Alternative algorithm, if n <9

Horr, NREANGEE . BE 0 A B2 200 H BB Bt 48 2 R i s AR v . B 1 BB B 5
TRBRARN A U B3 B SO A S AR IIR, 15 PR 22O S s AR A Rl U S B R /N
SO R B R, AT S A ] TR A T R T

AR T BUE N BEAT R IEVE R, e — &R s RE, ABFFE O B GA NWIE HIE
[FEmt B, BB TR EE N REAKT: 0.001 (1K), 0.01 (). 0.1 (F). 0.5 (&), ZEANEMLE
RS, FE =R B AT T AT B MR RE DA

AR RME S SVELE =N R B L i BE R BN R 2 Fros (BAVPAL L L = 100 AR, %8 I7Ew)
o TR L RAF P, R AR R TE 3.3 AT THEIR).

Table 2. Performance comparison of test functions across different thresholds
2 2. INEIME TN R 8 LAY EEXT L

{8 Sphere Rosenbrock Shekel’s Foxholes

0.001 7.38E+01 2.50E-01 0.9980038
0.01 2.29E+01 2.67E-01 0.9980038
0.1 2.11E-04 1.61E-01 0.9980038
0.5 2.83E-05 6.77E-02 0.9980038

BEx} g Sphere BR%, PO HYJREIT A RCEE AT GA. i BMENLHIESIEEYIE GA B2
509 IR DI 2 PO, LRGN TL 2 RE, PUEBE PO {E N EAIL IS I HATIR I A RBIEN
P72 GA KRN, oy 5 B AR B, SRS L. X TR %% Rosenbrock bR, i RI{E(0
= 0.5)7 R FEVERE R, BTG IA 6.77E-02. XKWL “Io i & MR BIY)H6 (0t SR& e AT AT
B GA TE S % BT (B =), L 5 51N PO SEIL R FORS AT, AT 380 08 8 Joy fs dpe {0« 3@ 42
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VIR SR GA IEWTE. [N R, 1E GA eI & mIR =5, BI{ELE 0.001~0.5 Vi H A A5
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3.3. A SRR AT

PR IR B (WM S BOE S 5 B BRI RS AL, AW AE TP VR e 01k . RSN 2
PESPATETE . FIH 20K UREOTSEVEREE 3y, B Gk s S BUR A, SRR 298 8 DL O/ S
Wi S B A5 Bl TH AR BRI s [N 7 R PR S SIS AT W BT, DAFE 70 R4 L [ A 1 R e
NTFREAVHT 1L AW AL CE WIS 55 (GA) S VT I fE.(0 = 0.5) LAt ., XFEL T L =50 (R F 341)
100 (FF&ESE 1) 200 (K JE3T) 500 (B Ja $91) DU Al 2 25 22 53t B R BUIR BE - AR Gei s VAl Ji 10 0k
RE X 223 L

BT RILER, K 3R THE GA_0.5 BIE T, AFIVEAl A K B Sk AR =N R B B 1k
REMIFEM o

Table 3. Ranking comparison of test functions across different evaluation periods

3. FEIHE BTN R EHEBRIEE

JAMKRE (L) Sphere Rosenbrock Shekel’s Foxholes graHEA (R
50 1 2 4 2(7)
100 2 1 1 1(4)
200 3 3 1 2(7)
500 4 4 1 4(9)

BT 35, VAL A L=100 TEATARCE P S HER AL, FRIUH SRR B ) S 12 E
£ Rosenbrock S5 s 345155 —, 1 Sphere s HER S =, MR 7 HAERE MDA L =50 K
A S SO ), BORRRIE B, FEINI ek b R I 22 ;L= 100 T BEAE PR AF P S mal B2 14 1) [R]
NEFARAEL) 100 RFESHRE L, A RIRRE R K, IWEE MY SRR .
&, L =200 B R s R, St H e IRIR S, SRRSO E T .

SRR, IS (L > 200) 2 Bk SRR, R I R (L = 50) AR & e B PE, L =100 B iIFsK
NSEIIRE 5T R BN s AR IE R . S5A T, RAHLEEZLSHCN: L GA NV HEIE.
100 AN PEAL L BT 0.5 DI RIME » 10 B LSRR BN SEBLIR S 3 R SR g R I A, R E 2R
RS T S FE R AR AE AL .

4. FEER L 54

AL EE S A SR AR B R R B b, R . R RIEN, B AR RGP EIEEA
[FIMS . 4EFE SRR RE T HPERE. Ik 10 NG (4 NI ERRH. 4 gk Shekel RFIREL. 2
A~ CEC 2022 BB G REMIAL | — N eI E A SRR . £ AR PR, 208, B& . fIR4E,
FgE. XK e, TRE)MBREERGERIT R SRR G R, Bt AR S 4) st
BT At . R EA R EEACRIER 10 NN, RERS SR, SIS I B TR S5 (AHEA) AR

4.1. B MERE
AAETHEAY B &N IR S L VR (AHEA)RIPERE, R THHER T T4 BB AN R Hh SR AR AIE A 28 L 35 v pR 2
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HEATXTELSELS, AL4E Sphere. Rastrigin. Rosenbrock F1 Shifted Rotated Ackley (SRA) R % . i Fh 53 (4l ikt
5L GAL ARG MRS PO KIEMAL 2 FHO. Sl Ak 7% ROA LLRA SCHE H ¥ H & R IR A 5
% AHEA)TE RN R B EANSTIZ AT 30 Ok, BRI R 4 fos, b IHEUE RRTE a = 0.05 /KFF
BAG B ER.

Table 4. Performance comparison of five algorithms across four classic benchmark functions

4. AMEAAENNEBEERY EMMRESIT XL

PR () A brifE 2= wAE & ZE{H HRAL L
Sphere (GA) 65.78E+00  15.99E+00 37.79E+00 94.91E+00 66.56E+00
Sphere (PO) 1.99E-05 9.89E-05 4.37E-13 5.41E-04 3.73E-09
Sphere (FHO) 7.04E-07 1.49E-08 6.30E-13 2.11E-05 4.95E-08
Sphere (ROA) 7.25E-03 1.43E-03 3.97E-05 2.07E-02 2.34E-05
Sphere (AHEA) 2.25E-07 1.08E-06 1.55E-14 5.92E-06 7.12E-09
Rastrigin (GA) 130.67E+00  14.92E+00 101.31E+00 169.61E+00 132.07E+00
Rastrigin (PO) 1.03E-05 3.67E-05 1.71E-12 1.97E-04 3.79E-08
Rastrigin (FHO) 1.26E-04 1.85E-06 2.89E-05 6.59E-03 1.34E-04
Rastrigin (ROA) 9.17E-05 7.20E-06 1.17E-06 3.20E-03 1.73E-04
Rastrigin (AHEA) 5.88E-08 1.28E-07 3.41E-13 4.42E-07 3.89E-09
Rosenbrock (GA) 5.46E-01 1.41E-01 3.75E-01 8.93E-01 5.02E-01
Rosenbrock (PO) 3.94E+00 4.77E+00 6.08E-03 13.70E+00 1.08E+00
Rosenbrock (FHO) 1.68E-01 1.26E-02 4.24E-03 4.89E-01 1.45E-01
Rosenbrock (ROA) 7.12E-02 1.51E-02 1.67E-04 5.24E-01 3.22E-02
Rosenbrock (AHEA) ~ 2.55E-03 2.93E-03 1.56E-05 9.39E-03 7.32E-04
SRA (GA) 1.89E+00 2.84E-03 1.22E+00 2.51E+00 1.86E+00
SRA (PO) 5.17E-05 1.48E-04 1.24E-07 8.11E-04 1.19E-05
SRA (FHO) 3.98E-04 7.80E-08 1.28E-05 9.97E-04 3.16E-04
SRA (ROA) 1.17E-04 2.09E-08 4.34E-06 7.07E-04 6.62E-05
SRA (AHEA) 2.84E-05 5.12E-05 1.28E-07 2.51E-04 6.87E-06

Ve WIS AE Friedman #3560 % 345 Nemenyi ke, ZERARFHRIEZ T HASK D, BF KT «=0.05,

EL B R HONA T, AHEA BUEEILH AR . XFHIE Sphere BR%, AHEA “FIJKEEIA
2.25E-07, 4 PO &L W MNMGEN, Hir#EZEEL, RHHEIT GA )5 @5 PO IRIEIF K I G
VI ST 1K BE S Fa e YR P . 76 2 1% Rastrigin Bi%H, AHEA 3385k 5.88E-08, Lt PO #&7+ =
AR, HEE N R SUR R U R GA EBRE, W5k TRk R ae . R
Rosenbrock pf%i I, AHEA LA 2.55E-03 [)~F-3{E 2.3 LT PO (1) 3.94E+00, HARAEZERAC, R T &%
TE i P T o ) R e P . TR PR e FE Ackley BRI B, AHEA [FIFETEIIME . i Ar$ S brife 2 b 4T
TR L. EIX=AINRER A E, AHEA [93E B I T 2 A DUAN S

SO HHE A AN EREIGE T AHEA BIPRERPE: REFE FICPIE S RAE A feEtE BT A R
BIFREZE S A BAR: BB IE BRI ik 7 PO ER MR AT R 2R A BRI . X R W] AHEA JEId 2 Re
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Figure 1. Comparison of convergence curves of five algorithms on basic test functions. Subfigure (a) corresponds to the Sphere
function, (b) to the Rastrigin function, (c) to the Rosenbrock function, and (d) to the Shifted Rotated Ackley function

& 1. AANEEEEANE E Azttt . H A&l (a) 2 Sphere BF#k, Bl (b) 2 Rastrigin &%, El(c)2 Rosenbrock
e %, [E(d)=2 Shifted Rotated Ackley bR %k

Fh 4 BB R, AR BIEN R &L B (AHEA)TE TUAN B B 57 L ¥ IAS T SE A0 Ao T 1l -
CRIET PO BUERE VI ESRE 115 GA Bikfae . AR R, MWL AT M52 ok B b 528l
TR SCEE S E RS E
4.2. =4 Shekel &FIZ YRR

RNV FVRAE B K& RSB i b B 82 2% v 2 in) j Bt RE, AT EL T 24 Shekel’s Fox-
holes BRI EL ) 25 B 4EASARVE IR JEvE, Fg 2 4. 54k, 7485 10 48R4 . %2R R B0E T a3 =25 A)
R IE K EIEX S AR R “YUiR” (R S), H2 g, JEXFRIR M SRR S Rm R /1. Rk
BRI UL R AE S e (A A R AR R T O™ IR Pk k. FEEEE IR, RSN EESHERSY
8] RN A B K, SRR ST MERE SURIBE N
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EX F

SIS S 4.1 TR RO EURESE, R SRAR AN R A S AE LR DU w4k Shekel bR &k EiEATXTEL,
M SRAE S — 4 EMSTIEAT 30 K, RRIRILIRINE 5 R, i #UE R RAE a=0.05 /K F A
AR TE SRR P

Table 5. Statistical performance comparison of five algorithms on four Shekel series functions
Fz 5. IMEATEIA Shekel RFIKH_EAIMERESE ST

PR (5IL) FEME bk 2 LA REMH iz %L
2D (GA) 4.72E+00 5.07E+00 0.998004 17.37E+00 1.95E+00
2D (PO) 1.56E+00 5.50E-01 0.998031 2.79E+00 1.44E+00

2D (FHO) 1.57E+00 6.92E-01 9.98E-01 4.69E+00 1.09E+00

2D (ROA) 1.01E+00 8.97E-03 9.98E-01 2.56 E+00 9.98E-01

2D (AHEA) 0.99901 2.03E-03 0.998003 1.01E+00 0.998130
5D (GA) —6.52E+00 2.99E+00 —1.02E+01 —2.59E+00 —5.07E+00
5D (PO) —5.04E+00 8.39E-01 —7.19E+00 —3.43E+00 —4.97E+00

5D (FHO) —8.99E+00 1.96E+00 —1.00E+01 —4.91E+00 —9.46E+00

5D (ROA) —1.02E+01 5.54E-06 —1.02E+01 —1.01E+01 —1.02E+01
5D (AHEA) —9.73E+00 4.28E-01 —1.02E+01 —8.80E+00 —9.88E+00
7D (GA) —3.84E+00 2.64E+00 —1.04E+01 —9.94E-01 —2.76E+00
7D (PO) —5.19E+00 7.26E-01 —8.32E+00 —4.72E+00 —4.98E+00
7D (FHO) —9.71E+00 1.16E-01 —1.03E+01 —8.83E+00 —9.75E+00
7D (ROA) —9.85E+00 1.51E-03 —1.04E+01 —9.56E+00 -1.01E+01
7D (AHEA) -1.03E+01 1.12E-01 —1.04E+01 —9.95E-01 —1.03E+01
10D (GA) —3.97E+00 2.66E+00 —1.05E+01 —1.29E+00 —2.84E+00
10D (PO) —4.91E+00 2.03E-01 —5.12E+00 —4.26E+00 —4.96E+00
10D (FHO) —9.70E+00 1.53E-01 —1.04E+01 —9.01E+00 —9.69E+00
10D (ROA) —1.05E+01 2.38E-06 —1.05E+01 —1.01E+01 —1.05E+01
10D (AHEA) —1.05E+01 9.81E—-06 —1.05E+01 —1.02E+01 —1.05E+01

TE: MRS AE Friedman 4356 & # 5 Nemenyi ke, 2 E0EAR PR ILEZ T HABSD:, BF KT 0=0.05,
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Figure 2. Comparison of convergence curves of five algorithms on four Shekel series functions. Subfigure (a) corresponds to
the 2-dimensional version, (b) to the 5-dimensional version, (c) to the 7-dimensional version, and (d) to the 10-dimensional

version
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Table 6. Statistical performance comparison of five algorithms on two CEC2022 complex functions
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Figure 3. Comparison of convergence curves of five algorithms on two CEC2022 complex functions. Subfigure (a) corre-
sponds to F8, and (b) to F12
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