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摘  要 

为了加快高级别自动驾驶汽车的发展与落地，基于场景的虚拟仿真测试变得至关重要。关于自动驾驶汽

车的虚拟仿真测试，其测试场景具有多样性、可重复性、可解释性和高生成效率等优势，是验证自动驾

驶系统可靠性和安全性的核心手段，已然是目前智能汽车行业的研究热点。本文通过广泛调研测试场景

的自动生成方法，以测试场景的技术演进为主线，系统梳理从基础元素提取到智能场景生成的发展脉络，

揭示各阶段技术特征及核心突破。要实现场景生成技术的终极目标自动化与测试全覆盖，未来研究应聚

焦于：构建基于关键场景参数分布的高维风险估计模型，以精准定位潜在危险区域；融合多技术优势，

设计兼顾真实性与效率的混合场景生成框架；并结合交通知识、物理约束与代理模型增量学习，构建“生

成–反馈–迭代”的闭环机制，持续提升对高风险场景的覆盖与揭示能力，从而高效支撑自动驾驶系统

的验证与安全保障。 
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Abstract 
To accelerate the development and implementation of high-level autonomous vehicles, scenario-
based virtual simulation testing has become crucial. Regarding virtual simulation testing for 
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autonomous vehicles, its testing scenarios offer advantages such as diversity, repeatability, explain-
ability, and high generation efficiency. It serves as a core method for verifying the reliability and 
safety of autonomous driving systems and has emerged as a research hotspot in the smart automo-
tive industry. This paper conducts an extensive review of automated test scenario generation meth-
ods, with a focus on the technical evolution of testing scenarios. It systematically outlines the devel-
opmental trajectory from basic element extraction to intelligent scenario generation, revealing the 
technical characteristics and breakthroughs at each stage. To achieve the ultimate goals of automa-
tion and full coverage in scenario generation technology, future research should concentrate on: 
constructing a high-dimensional risk estimation model based on key scenario parameter distribu-
tions to precisely identify potential hazardous areas; integrating multiple technical strengths to de-
sign a hybrid scenario generation framework that balances realism and efficiency; and combining 
traffic knowledge, physical constraints, and surrogate model incremental learning to establish a 
“generate-feedback-iterate” closed-loop mechanism. This will continuously enhance the coverage 
and exposure of high-risk scenarios, thereby effectively supporting the verification and safety as-
surance of autonomous driving systems. 
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1. 引言 

在创新与市场驱动下，自动驾驶技术正加速发展。然而，自动驾驶车辆若出现软硬件故障，不仅无

法完成驾驶任务，还可能对乘客与行人造成伤害[1]。仅 2022 年记录的由自动驾驶引发事故数量就占到了

2019 到 2022 年总量的 49% [2]。随着自动驾驶车辆的不断开发迭代，自动驾驶系统会愈发复杂，对其功

能的测试和验证更具挑战[3]。因此如何进行自动驾驶系统的测试与验证工作，证明自动驾驶车辆能够在

实际的交通中安全行驶，仍是亟需解决的关键问题[4]。 
传统道路实测受制于真实场景可重复性差等问题，自动驾驶汽车的测试通常达不到预期效果[5]。此

外，由于缺少复杂极端环境下的边界场景测试，自动驾驶系统的一些安全缺陷不易被发现。美国兰德公

司的相关研究结果显示，若要在 95%置信度水平下，验证自动驾驶汽车的事故致死率相较人类驾驶员降

低 20%这一结论，需开展累计里程超 110 亿英里的实车道路测试，仅靠开放道路测试难以在合理时间内

验证系统的功能安全性[6]。对比而言，基于虚拟场景的仿真测试方法高可重复、高效率、低成本、安全

性强，近年来已经逐渐成为自动驾驶性能测试评价主流手段，其原理流程如图 1，其中仿真测试场景构建

是图 1 所示方法的核心环节。 
传统的仿真测试场景构建是通过采集真实交通环境中动态交通参与者的运动状态信息、高精度地图

和传感器数据等真实交通场景数据，并在仿真系统中将这些真实场景重构为测试场景[7] [8]，这种方法已

经在 Waymo 和百度 Apollo 等开发者测试过程中得到广泛应用。此外，还可以利用建模技术基于真实场

景数据随机生成复杂、危险的虚拟仿真场景。 
本文聚焦于自动驾驶仿真测试中的场景构建，从场景构建技术研究进展与技术演变的视角切入，

系统梳理了该领域从静态建模到动态逻辑抽象，再到融合数据驱动与智能算法的自动生成方法的发展

脉络。 
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Figure 1. Autonomous driving simulation test framework 
图 1. 自动驾驶仿真测试框架 

2. 仿真测试场景构建基础 

在场景自动生成技术的基础构建过程中，研究者围绕场景定义、术语体系构建与静态、动态要素建

模等方面进行了系统性探索，奠定了场景建模的理论与方法基础。这一阶段的研究突破实现了从“手工

构建”向“数据支持建模”的转变，在静态场景组成、搭建与动态逻辑生成方面实现了从无到有的构建，

为后续数据驱动与智能生成阶段的发展奠定了标准与数据基础，是场景生成从工程构想走向系统实现的

关键起点。 

场景定义与核心要素 

场景最初是用于软件系统的开发测试，描述系统的使用要求和使用环境[9]。研究者们对场景的定义

进行了广泛而深入的探索。Shieben 率先将测试场景概念引入自动驾驶汽车测试领域[10]。针对场景的具

体定义，Koskimies 给出了如下阐释：场景是系统完成特定任务时，一连串事件的非正式表述[11]。邓伟

文教授提出，在自动驾驶测试理论框架中，场景可定义为测试需求驱动下对汽车行驶环境的一种有限抽

象与充分映射[12]。 
为明确自动驾驶仿真测试中的场景定义与分类，国际标准组织在多个文件中给出了系统性的阐述。ISO 

21448 标准明确，场景是带明确目标与参数的交通环境瞬时状态序列内各片段的时序关联，其瞬时状态包

含道路环境、动态交通参与者、本车的属性状态及三者的交互关系[13]。后续发布的 ISO 34501 对该定义进

行了修订更新，将场景定义为：被测自动驾驶车辆执行动态驾驶任务时，本车与周边静、动态参与对象在

时间序列内的状态变化及交互作用的集合。同时，该标准还将场景划分为功能场景、抽象场景、逻辑场景

和具体场景四个层级[14]。图 2 展示了场景定义的时间线，这些研究推动了标准化术语体系的建立。 
在此基础上，学者们进一步探讨了不同层级场景的作用。Menzel 等学者针对自动驾驶场景的层级划

分提出明确界定：功能场景适用于自动驾驶汽车的概念研发阶段，主要服务于项目定义、危害分析及风

险评估等核心工作，其描述方式以语义表征为主，聚焦于阐述实体自身属性及实体间的相互作用关系；
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逻辑场景则是功能场景的形式化表达，通过参数空间内的变量对功能场景进行量化描述，而该参数空间

可通过数据拟合或理论分析两种途径构建；具体场景是通过在逻辑场景的参数空间中采样得到，直接对

应测试用例，是测试环节的核心输入[15]。 
 

 
Figure 2. Timelines defined for various scenarios 
图 2. 各类场景定义的时间线 

 
除了基本层级场景外，自动驾驶测试研究领域还进一步引入了关键场景、极端场景等核心衍生概念。

根据 ISO 34502 标准的界定，关键场景是指当场景内部分要素出现，或其状态发生改变时，会显著提升

危险事件的发生概率，或加剧危险事件造成后果严重程度的一类特定场景[16]。ISO 21448 定义极端场景

为稀少或不常见的情况。Breitenstein 等学者将其予以具象化界定：在理应出现常规交通要素的位置，出

现了超出系统预期的不可预测异常对象[17]。而 Li 等人则从路径影响的角度给出定义，认为极端场景是

指存在目标物体阻挡自动驾驶汽车潜在行驶路径的场景，且其不属于 Han [18]中定义的自动驾驶通用识

别类型[19]。 
自动驾驶场景的术语体系逐渐形成了较为完整的分类框架，主要可分为三类：一是以功能场景、逻

辑场景和具体场景为核心的层级术语，用于从抽象到具体刻画自动驾驶任务的完整语义链条；二是以关

键场景和极端场景为代表的风险术语，强调对系统潜在失效模式和鲁棒性进行针对性考察；三是以安全

场景和危险场景为基准的测试结果术语，用于评价系统在不同风险条件下的表现。 

3. 场景生成技术演进 

3.1. 场景要素提取 

场景要素提取是场景生成的基础环节，核心任务是从真实交通数据或环境中获取静态场景要素(道
路、建筑、交通标识等)和动态场景要素(车辆、行人、交通灯的行为规则等)，为后续参数建模提供原始

数据支撑。 

3.1.1. 静态场景要素提取 
场景组成如图 3 所示，包括动态元素(交通车辆、行人和红绿灯等)和静态元素(建筑、绿化、道路、

斑马线和锥桶等)。场景静态元素是组成场景的重要部分，其中道路是场景静态元素的关键部分，它是由

车道标线、导向标线、停止线、人行横道标线、路肩等静态元素的组合成。 
从 2008 年开始至 2015 年开始进行静态道路的提取方法早期探索，主要通过实地采集、遥感地图提

取。实地采集道路通过混合惯导、激光雷达和相机来测绘提取道路；基于遥感地图提取道路的方法是通

过卫星地图获得道路几何拓扑信息，对其数据集进行道路特征提取。通过这些方法获得道路结构的二维

坐标信息，并最终转换成 OpenDRIVE 格式，实现道路网的可用化和可视化。 
在仿真场景构建领域，依托现场采集的道路数据来获取对应道路信息，是一项在场景构建研究与应

用中至关重要的技术手段。Shi 等人结合了立体图像、导航数据、激光扫描数据和自研混合惯性测量系统，

通过图 4 所示流程进行融合，包括直接地理参考、激光点渲染、图像定位、基于激光点云的候选提取以
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及基于图像和激光数据融合的最终鲁棒提取这五个关键步骤，最后提出了一种自动测绘道路的方法，该

方法能够实时获取道路的几何形状与特征信息，为自动驾驶系统提供精确的静态道路数据，10 KM 道路

边界提取成功率 95%以上，晴天道路标志提取成功率 94.3%，其识别率为 71.4%，成图效率为 0.2 km/人/
天[20]。 
 

 
Figure 3. Simulation test scenario elements 
图 3. 仿真测试场景元素 

 

 
Figure 4. Fusion process flowchart 
图 4. 融合处理流程图 
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实地采集方式的显著优势是可还原真实的道路场景信息。生成的路网真实程度和精细化程度高，包

括道路几何、交通标识、车道线等信息。但实地采集存在效率低下的问题，不仅需要大量的人力成本和

时间成本对实地周围环境、道路要素进行扫描，而且需要较高的技术成本对扫描数据进行解析处理。 
通过遥感地图的方式提取路网主要包括遥感影像获取、影像增强、几何校正图像分割和特征提取矢

量化处理四个步骤。在遥感图像道路提取领域，DenseU-Net 模型被广泛采用。该模型具备较小的参数规

模，同时性能优异，能够输出精度更高的道路提取结果。研究人员通过改进 DenseU-Net 模型，以 DenseNet
为编码器，结合 LAU、GAU 模块及跳跃连接，实现图像分割，研究者使用该模型从遥感图像中提取路网

信息，从而获得道路的几何和拓扑信息，遥感影像中每个像素的空间分辨率为 1.2 m，提取精度为 96.3%，

召回率为 95.2%；使用 C-Dataset 图像分表率为 0.2 m，每张影像由 3 × 6000 × 6000 像素组成，提取精度

为 85.5%，召回率为 78.5% [21] [22]。在道路相关的数据集体系中，遥感影像公开数据集是较为常用的类

别之一，其不仅能为算法模型的训练与性能验证提供数据基础，还可针对性解决二元分割相关任务。该

数据集采用二元类别标签体系，具体划分为道路与非道路两大类。研究人员采用基于分类的技术方法，

以道路的几何特征、纹理特征及光度特征为核心判别依据，开展高精度的道路区域提取工作[23]。 
基于遥感地图开展道路提取，核心优势体现在两方面：其一，遥感影像数据覆盖范围广泛，可快速

高效获取多区域大范围的道路网络结构信息；其二，其提供的高分辨率数据能够精准捕捉道路的几何特

征及其他细节信息。然而，受光照、阴影和分辨率、树木、建筑物和高架桥梁等多种因素的影响，导致基

于遥感图像的道路提取准确度在一定程度上降低，同时该道路提取方式仅能提取得到路网的道路边界，

无法还原道路标识和交通牌等细节。 
开源地图数据的规模化应用，在自动驾驶领域中具有重要价值，不仅提供了包括道路、建筑物等在

内的丰富地理信息，还能借助机器学习等技术手段实现自动化错误检测与修正，减少对外部参考数据的

依赖，进一步提升数据的完整性和准确性。Wan 等提出了一种基于 OSM 信息的高分辨率遥感影像分类

方法，通过使用道路缓冲区和其他类别的信息来训练分类器，并展示了该方法在不同测试区域中取得了

最佳分类准确率，从而提高了对道路等地理要素的识别精度[24]。J. Kaur 则采用机器学习方法，利用 OSM
数据内在参数如道路连接性和长度等自动检测并纠正 OSM 数据中的错误，无需依赖外部参考数据集，为

提升 OSM 数据质量提供了自动化解决方案，增强了数据的完整性和准确性[25]。在自动驾驶测试场景构

建技术的发展进程中，OSM 地图的普及与广泛应用，为其技术突破与落地提供了强有力的保障。张兴宇

提出了一种利用 OSM 数据构建自动驾驶测试场景道路环境的方法：按道路类型分类提取真实路网，建立

基本道路单元模型，聚类分析获取典型道路单元，遗传算法优化组合形成测试网络，实现对目标区域道

路环境的精确覆盖[26]。基于开源地图提取道路的方法既能提取大面积区域内的路网，同时也能一定程度

地获取到车道数量和标志牌，但还是无法精确完整地还原真实道路。 

3.1.2. 动态场景要素提取 
动态逻辑场景生成聚焦于构建自动驾驶场景中交通参与者的行为规则、交互逻辑及场景演化机制，

通过抽象化的逻辑设计，使静态场景元素具备动态行为特征，从而模拟真实交通环境中的复杂情况。其

核心目标是在有限的规则或数据基础上，生成符合交通规律、具备多样化行为模式的场景，为自动驾驶

算法提供更具挑战性的测试环境。 
为构建具备普适性的场景描述范式，科研学者将哲学领域的本体论概念引入自动驾驶测试场景生成

流程，旨在形成一套更为系统、全面且客观的场景生成方法论。Geyer 等学者通过全面剖析自动驾驶系统

各交互组件可能面临的潜在工况，成功在自动驾驶导航控制模块中实现了测试场景的结构化表征[27]。
Alexandre 则聚焦于自动驾驶车辆、感知目标及地图信息三大核心要素展开分析，以此确定对应的描述本
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体，进而实现对道路环境中所有元素及其交互关系的概念化刻画，并依托交叉路口的车辆导航功能完成

了该方法的有效性验证[28]。Chen 等学者开发了一种基于本体论的层次化框架，专门用于生成高速公路

自动驾驶车辆的测试用例，该方法通过构建三层架构(基本层、交互层和生成层)利用静态和移动概念定义

了高速公路、天气和车辆三个本体，并使用一阶逻辑表达关系和规则。该方法提供了一种系统性的框架，

能够自动产生各种驾驶场景下的用例，以确保自动驾驶系统的安全性与可靠性，从而为高级驾驶辅助系

统(ADAS)的验证提供了有力支持[29]。Bagschik 等人聚焦自动驾驶系统的功能特性与安全性能分析需求，

构建了针对性的本体描述框架；该框架借助自然语言生成技术产出标准化交通场景，并将其作为场景库

搭建的核心基础，最终达成了自动驾驶测试成本有效降低的研究目标[30]。 
在场景的测试流程中引入本体论，虽有效改善了原有方法在理论支撑与系统架构上的不足，但依旧

面临三方面问题：一是本体构建环节存在不可避免的主观判断；二是难以同步获取可直接应用的逻辑场

景参数空间；三是场景维度增加会致使组合空间超出人类主观思维边界，进而造成专家经验法难以覆盖

所有潜在场景类型。 

3.2. 场景参数空间建模 

场景参数空间建模核心在于明确车辆速度、距离、行人行为等场景参数的取值范围、分布规律及交

互约束，进而构建可量化、可计算的参数空间。对应的技术路径可划分为基于规则与聚类的建模以及智

能算法主导的参数空间建模。 

3.2.1. 基于规则与聚类的参数空间建模 
随着由道路测试、事故分析等渠道采集的车辆自然行驶数据持续积累，依托数据解析与统计特征挖

掘实现逻辑场景的规模化自动生成，已成为当前自动驾驶领域的研究热点。该方法相较于专家经验法更

具客观性，且生成的逻辑场景覆盖度更为全面。依据自动驾驶测试场景数据提取技术路径的不同，目前

国内外相关研究可划分为两大技术流派，其一为基于规则的场景提取方法，其二则是基于学习或聚类算

法的无监督场景提取方法。 
基于规则的方法通过预设场景类型或阈值参数，实现了符合条件的时序数据的自动化分割与聚类。

Aydin 等人在研究中采用了这种技术路径，通过从碰撞数据中筛选人为因素和冗余场景要素，生成关键测

试场景，并建立了基于死亡率与相对频率的场景测试优先级排序机制[31]。基于自然驾驶数据的深度分

析，Wassim 归纳得到 37 类乘用车的典型预碰撞场景，首次整合了单车辆、多车辆碰撞的动态特征与事

故前关键事件，通过量化场景发生频率、经济成本和功能寿命损失等社会危害指标，建立了优先级明确

的事故预防研究框架。突破了传统场景分类的局限性，将环境、驾驶员及车辆因素融入动态场景定义，

避免了技术效益的重复计算，提出了可年度更新的标准化数据映射方法，为自动驾驶测试场景库的生成

提供了可扩展的实证基础，同时构建了多维度危害评估模型，为主动安全技术的研发方向与测试标准制

定提供了数据驱动的决策依据，显著提升了场景构建在交通安全研究中的实用性和科学性[32]。以现实交

通监测数据为基础，Nakamura 提取场景参数分布特征，划定了日本高速公路切入、减速场景的参数范围

[33]。Batsch 等人将切入情景划分为驶入前方重叠区域、驶入主车车道前方区域和驶入主车路径前方区域

三个类别，当两车交互时符合以上状态时即可确认为发生切入；该研究进一步提出基于高斯过程分类的

性能边界识别方法，通过构建场景参数空间(如目标车速度、自车速度及雷达视场角)与场景结果(碰撞/非
碰撞)的概率映射模型，实现对自动驾驶车辆关键场景的高效筛选[34]。基于规则的方法具备运算简便、

数据分割条件明确的优点，其不足在于仅能获取固定数量典型场景，且筛选标准的跨库通用性较差。 
为弥补基于规则方法的技术短板，科研人员进一步推进了基于学习或聚类的无监督方法在自然驾驶

数据场景提取中的应用与迭代。Li 等人结合 VAE 与 K-means，构建了无监督聚类方法，属于车与车之间
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交互的典型测试场景[35]；Ponn 基于 HighD 数据集，通过分层聚类提取场景，按既定标准分配给九个预

定义功能场景。然后再确定逻辑场景参数空间[36]。陈吉清基于国家车辆事故的深度调查数据，利用独热

编码与聚类分析的方法获得 15 个道路路段类别的车辆碰撞的危险场[37]。Langner 结合 VAE、CNN 与

LSTM 特殊优势完成了在自然驾驶数据中典型场景的自动聚类与异常检[38]。Philippe 针对路口交通事故，

通过 k-medoids 聚类的方法获得 15 种典型丁字路口危险场景与 6 种十字路口逻辑场[39]。Lenard 使用系

统聚类来分析汽车跟行人碰撞的事故，发掘出可以代表 86%事故案例的 6 种典型逻辑场[40]。Gelder 基

于 Wasserstein 距离衡量场景代表性，在自然驾驶数据中完成了对逻辑场景参数空间和概率分布提取[41]。
无监督学习与聚类方法虽可实现场景自提取，却易忽略数据中的低概率场景，且因过度依赖数据难以泛

化场景类型，在测试覆盖率上仍存不足。 

3.2.2. 智能算法主导的参数空间建模 
在以智能算法为核心的场景生成的技术发展过程中，场景构建实现了从数据驱动向策略学习与自我

推理的跨越式跃迁，标志着自动驾驶测试从被动再现转向主动构造，其根本性变化在于生成逻辑由统计

规律特征走向行为策略自我推理。该阶段以深度学习、神经网络、强化学习、生成对抗网络等智能方法

为主。更为重要的是，该阶段方法的共同特征是将“系统认知”嵌入“场景构建”，不再将场景视为独立

样本，而是作为驱动系统逼近极限与暴露风险的仿真建模工具，赋予了场景生成方法主动性、适应性和

学习能力，从而实现了从语义抽象到决策生成的全链条生成闭环，标志着仿真场景生成技术迈入系统化、

自动化与高效化融合的新阶段。 
为了突破自然驾驶数据危险场景样本稀疏的瓶颈，一些专家学者通过对车辆运动规律和危险场景要

素特点的深度分析，并借助人工智能技术自动生成危险场景类型，核心通过神经网络、强化学习及对抗

学习三大技术路径构建模型。神经网络通过在自身网络中循环传递状态来描述动态时间行为，通常用于

序列数据建模来生成新的序列。Jenkins 借助 V2X 时间序列数据，运用循环神经网络实现新事故场景自动

生成[42]。Beglerovic 等人利用径向基函数神经网络对被测系统的近似建模，然后分析近似系统跟真实系

统之间的性能差异来排除测试过程中的次优场景[43]。 
强化学习方法将自动驾驶汽车与周边交通环境的互动视为有机整体，可依据场景复杂度动态适配策

略以达成最优决策目标；该方法归属于马尔可夫决策过程范畴，核心包含状态 s、动作 a、状态转移概率

P 和奖赏 r 四大要素。在场景测试领域，Qin 等人提出将自动驾驶汽车建模为“自我智能体”，将其运行

环境中的其他车辆、行人、交通灯等元素建模为“对抗智能体”。该方法借助表格与深度强化学习合成

对抗智能体的控制器，在满足合理约束(如交通规则)的前提下，促使自我智能体违反安全规范，从而实现

场景测试[44]。与传统场景测试技术相比，这类对抗智能体泛化能力更强，能够适应不同的自我智能体、

初始条件及环境。 
对抗学习网络含生成器和判别器，生成器先将样本传入判别器进行真实性判定，再通过循环递进的

迭代优化，提升生成能力以输出接近真实的样本数据。Ding 等人构建出了一种生成边缘场景的框架，利

用自回归模块表示交通场景，然后引入梯度强化学习对关键场景参数组合强化搜索，对生成式网络小概

率事件生成的缺陷进行弥补[45] [46]。Demetriou 将递归条件生成对抗网络引入到轨迹生成过程中，成功

开发了一种深度学习框架，其可处理可变长度的行驶轨迹[47]。Krajewski 利用生成对抗网络设计了车辆

轨迹生成模型，能够直接生成新的换道轨迹。并提出了一种改良的无监督贝塞尔变分自编码器方法，以

提高换道轨迹的位置和速度平滑度[48]。 
基于学习的方法可有效改善自然驾驶数据中边缘、极端场景样本不足的问题，大幅丰富场景类型，

是未来场景生成的发展趋势。但当前多数方法存在局限：忽视车辆间的综合交互行为策略，将车辆视为

https://doi.org/10.12677/csa.2026.162049


卢宇航 
 

 

DOI: 10.12677/csa.2026.162049 177 计算机科学与应用 
 

单体；且以车辆运动交互为生成核心，缺乏对道路结构、交通指示牌等场景要素的生成。 

3.3. 具体测试用例生成 

具体测试用例生成是场景生成的最终环节，核心任务是结合时空信息、物理参数和环境条件，将抽

象的行为逻辑转化为可用于自动驾驶系统测试与仿真的具体场景实例。该环节需兼顾场景的多样性、真

实性和测试效率，通过算法优化和策略设计，生成覆盖不同工况的测试用例，以全面验证自动驾驶系统

的安全性和可靠性。具体场景生成时，若需实现对被测自动驾驶车辆逻辑场景参数空间全域的覆盖，就

必须最大限度保障测试覆盖率，而组合测试正是实现高测试覆盖率的常用技术手段，能让采样参数均匀

分布于全参数空间，大幅提升测试覆盖效果。 

3.3.1. 组合测试与概率采样 
Xia 采用组合测试工具 PICT 保障覆盖率与场景复杂性，通过层次分析法计算各场景参数的相对权重

[49] [50]。Rocklage 利用非递归回溯和组合测试两种方法相结合，进而生成具有覆盖率可变的测试集合

[51]。舒红采用三因子组合与变强度组合测试生成路口车辆关键场景，以 TTC、PET 及最大减速度为场

景识别指标[52]。 
考虑覆盖率的场景生成方法虽能评估自动驾驶系统全参数空间表现，却难以快速确定其性能边界；

且因安全场景在参数空间占比大，组合测试在关键场景搜索上效率不足。针对上述局限，部分学者提出

自动驾驶汽车测试的核心目标是对比其与人类驾驶员的事故情况，基于此，他们将测试过程与自然驾驶

概率分布结合，通过无偏估计把具体场景测试结果转化为真实驾驶事故发生率。生成该事故率的主流方

法则包括蒙特卡洛模拟与重要性采样两种。修海林分析前车制动场景参数，通过蒙特卡洛法统计分布特

征，实现测试用例的动态采样[53]。蒙特卡洛模拟以随机采样为核心，需充分采样才能满足置信度要求，

这势必导致测试成本与时间大幅增加。为解决该问题，学者将重要性采样引入测试场景生成，其关键在

于用新概率密度函数替换原分布，根据场景危险程度调节生成权重，进而强化关键危险场景的生成。Zhao
等人利用场景危险度对似然函数的进行构建，实现了前车跟车场景、切入场景和换道场景中的危险场景

强化生成[54] [55]。Feng 联合重要性采样和贝叶斯推断两种方法，改进了似然函数构建过程，同时提出

了一种针对危险场景自适应的搜索框架，并在高速公路匝道中实现了危险场景用例的生成验证[56]。Xia
依据核密度方法计算自然场景的参数概率分布，引入了 Metropolis-Hastings 算法来进行采样，并使用欧氏

距离和组合测试方法来加速模拟测试过程[57]。 
对于基于概率采样的场景生成方法而言，其技术实施的核心要点是预先掌握自然驾驶状态下的概率

分布规律。具体应用中存在两方面特点：一是已知自然驾驶概率时，搭配失效区域数据就能直接得到与

自然驾驶事故率相近的结论，同时失效区域仅需一次采样，无需反复测试；二是该方法存在明显短板，

概率误差的存在会对方法的实际效果产生影响，进而导致可靠性层面的隐患。 

3.3.2. 优化搜索与代理模型 
面对海量测试场景与长尾危险场景识别挑战，传统场景生成方法效率与覆盖率不足。研究者聚焦优

化搜索与代理模型技术，成为场景加速生成的核心突破方向。优化搜索方法通过算法定位危险场景以发

掘自动驾驶系统性能边界，主要分为危险场景强化搜索和性能边界直接搜索两类。危险场景强化搜索通

过优化算法强化高危险度场景生成，主流方法包括遗传算法、贝叶斯优化等。邢星宇等将遗传算法与贝

叶斯优化并行引入，显著提升高风险场景发现效率[58]；Duan 等融合组合测试与贝叶斯优化，解决效率

与成本平衡难题[59]。该类方法的关键瓶颈是难以适应场景高维特征，易陷入局部最优。 
在优化搜索方法的两大分支中，性能边界直接搜索的核心导向十分明确，即直接定位参数空间内的
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系统性能边界，从而划定自动驾驶系统的运行极限。Sun 等提出场景自适应生成方法，通过危险场景迭代

优化拟合性能边界[60]；朱冰等以自然驾驶数据中的性能边界为先验，通过测试优先级计算快速发现性能

边界[61]。现有优化搜索多为串行处理，难以适配云测试等并行测试趋势。Huang 等提出基于高斯混合模

型(GMM)与单调稀有事件集学习的重要性采样变体，通过构建内外部近似集挖掘碰撞等稀有事件的主导

点并形成混合采样分布，有效规避高维联合分布带来的维数诅咒，实现极端场景的高效加速生成，显著

提升自动驾驶测试效率[62]。 
为克服高维场景效率瓶颈，研究者采用代理模型(深度学习模型)快速预测场景测试结果以筛选危险

场景。其核心流程为：随机抽取少量场景测试训练模型、预测未测试场景、验证高危场景并迭代训练，

直至程序停止。 
强化学习常用于构建代理模型，通过控制交通车运动与被测车辆交互生成经验，进而迭代优化危险

场景的生成策略。Koren 等将车辆运动转化为马尔可夫决策过程，依托神经网络与蒙特卡洛树搜索挖掘危

险场景[63]。Chen 等人考虑到危险测试场景常分散于不同聚类区域，用非参数贝叶斯方法对其聚类，结

合 DDPG 模型来控制车辆运动，进而生成典型的车辆切入本车车道的危险测试场景[64]。 

4. 总结 

随着自动驾驶技术从辅助驾驶向全无人驾驶迈进，测试场景的复杂性和完备性成为技术落地的核心

瓶颈。传统规则化简单场景无法满足 L4/L5 级系统验证需求，场景生成正从静态建模向动态演化、从经

验驱动向数据智能范式转变。本文基于场景要素提取、场景参数空间建模、具体测试用例生成三维技术

框架，系统梳理场景生成从基础要素获取到智能用例泛化的全链条发展脉络。场景自动生成技术各阶段

递进融合，向全流程自动化推进：第一阶段以手工建模与专家经验为基础，确立场景语义要素与结构模

板；第二阶段依托自然驾驶数据挖掘，实现场景静态到动态的跃迁，形成数据驱动范式；第三阶段引入

强化学习等智能算法，赋予场景交互、自适应能力，可探索未知极端风险。 
场景生成的终极目标是自动化与测试全覆盖，需具备真实语义完整的场景构建、泛化逻辑抽取及高

效失效边界识别能力。未来研究应围绕高维风险估计模型构建、混合生成框架设计，融合交通知识与物

理约束，结合代理模型增量学习形成“生成–反馈–迭代”闭环，提升危险场景暴露能力，支撑自动驾

驶高效验证与安全保障。 
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