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Abstract

Video Anomaly Detection (VAD) seeks to automatically detect abnormal events in long-duration
surveillance videos and plays a critical role in applications such as intelligent surveillance and smart
transportation. Owing to the rarity of anomalous events and the prohibitive cost of fine-grained an-
notations, most existing methods rely on weakly supervised learning. Nevertheless, they often strug-
gle with limited anomaly semantic expressiveness, suboptimal cross-modal alignment, and unsta-
ble optimization induced by noisy supervision. To address these challenges, this paper proposes
the Semantic-Augmented & Guided Enhancement for Video Anomaly Detection (SAGE-VAD) frame-
work. First, we design a Hybrid Prompt Ensemble (HPE) mechanism that integrates manual templates
with multi-dimensional descriptions generated by LLMs to construct high-coverage category proto-
types. And Frame-level Teacher Scores are incorporated as rule-based priors to impose consistency
constraints, thereby suppressing noise activations and optimizing keyframe selection in the selector
branch. Experimental results demonstrate that SAGE-VAD achieves significant performance gains on
the UCF-Crime and XD-Violence datasets, reaching a video-level AUC of 87.47% and an Average Preci-
sion of 85.08%, respectively. These results validate the effectiveness of the proposed semantic aug-
mentation and rule-guided mechanisms in weakly-supervised anomaly detection tasks.
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Figure 1. Overall architecture of the SAGE-VAD framework
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Figure 4. Dual-path training guidance via rule-based frame-level anomaly confidence modeling
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DABf AR 285 SR 1) A~V AT S I

TERII SRR B, ARSCR A CLIP /BRI - 18 S HFIESR LAY, CLIP TS HR RS, (U
HTHE S SO BRI E AN 43 S R AR HGEAT I k. ALY 5463047 10 4 epoch,  DUBEG7E 55 B 4%
PERRADIE . RATEIIEFH AdamW, HIU6E%: ) R I BN 2x107° , B 2R HERARL B 1x107, JF
Gh o o) SR R P SR LARR TN R AR B M . N ARIESEIG S5 T O, BT S0 35 [ 52 BE LA T
3407 347

TERLIR B B J7TH, %F UCF-Crime Fil XD-Violence, YIZRHEIR /N7 AIBEE N 64 Al 96. N T HE4F bR
R T EAEA RN G 261 N AR e R, SEIRHE T 5 AN RIBEHLF T 3407, 2026, 999. 42, 7 i
TMSTN R E I + b2 FERRRECET b, BRI B4, A SCFI Nl | B 22 5249 2%
SRR e, FORUE S 0.05 A P E I Zhid F2 S R aish iy B . WGBS S o TR0 — St 4R
55 OCBEMTE REAR DGR G, SR Ak 20 warm-up SR 51N, DABRARHIIN S 36 75 DI SR AT Y A A T4k«

TEGIAELT 1, ARSCEET PyTorch MRS SIHESE AT 5500, CUDA WAy 12.8, cuDNN fRA Ny
9.0.1.2, Frf sSL¥I7E NVIDIA GeForce RTX 5090 GPU 581, ZE &M% 32 GB ZA7, AL & K
PRSI AE E A5 5 22 43 SN GRIF RAF 75 5K

Table 1. Comparison of video anomaly detection performance under different supervision settings
= 1 AEEESER TSNS SN 75 AR REXTEE

UCF-Crime XD-Violence
Supervision Method Feature
AUC (%) AP
GODS [12] 13D 70.46
Semi-Supervised
GCL ResNext 74.20
Zero Shot CLIP-TSA [13] CLIP 87.58 82.17
Juetal - 84.72 76.57
Sultani et al. - 84.41 75.81
RTFM [14] 13D 84.30 78.27
AVVD [15] CLIP 82.45 78.10
Weakly-Supervised
DMU [16] CLIP 86.75 82.41
UMIL [17] X-CLIP 86.75
PLOVAD [18] CLIP 87.06
SAGE-VAD (Ours) CLIP 87.75 (x0.04) 85.08 (+0.11)
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Figure 7. Training Loss curves on the XD-Violence dataset
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Figure 8. Visualization of frame-level anomaly responses over time for different anomaly categories
8. IG5 & R B Shsi 2R 5= & o) Rz Pl Bt [8) 2R (L RO RT AL AL 45

% 1 JB/R T SAGE-VAD 5EIA /8% 7794 UCF-Crime F1 XD-Violence ¥E4 F\TEREXTEE, 1
7, &1 8 43 SR BRI LE I 25 LA R s F2 o (e el A 25 SR o Jl 56 1 mT UK A% S i) e i B 5 v (W0 GODS.
GCL) H1 TR A SRy BURFAE, OB PERE I 2B o TR AT IAAE — B AR R B2 2 TR0 15 5 A )
WSz AR, (BAER R TR . RN BN E T, £ CLIP Mk BRitF15
3D CNN HFAET7 2, BoriE | B AR ANV S AR CE AN S 5 S I o P 2801k o /2 Sl |, SAGE-VAD #£ UCF-
Crime HUfS T 87.75% +0.04%]¥] AUC, 7 XD-Violence %% T 85.08% +0.11%f1] AP, LT KZ ¥
SR B ONE R BN R A, s O SO R S BN 5] SRR

5.2. Hybrid Prompt Ensemble B& %1% 547

M 2RI DLE R, N AR, fAIE AUC EREASENTS 86.07%, {HTE mAP@IloU f&kx L
BARRIIRGG, FHMENCN 4.38%. XL N THAR BARGEE R IEAR 8 . S5 MR SANIE S, ERFHIER
K7 AR B —, 3 DUTE 25 S W AT N TE RS AL R 4T 5 e I 2 B, DRI X 53 % 1 B RORG i s r
AE I PR o AR B N AR, SO LLM A2 5%/ Prompt #5518 J5, #FLAE S ToU BIME T HY mAP )
ARSI, P8 mAP T % 6.85%, AUC thiET+ % 86.92%. %45 H KM, LLM AR 2 A0S S
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Table 2. Performance of different Prompt construction strategies based on the UCF-Crime dataset

%< 2. EF UCF-Crime 3BSERAE Prompt #3E SRBE AV 4 RERIN

mAP@IoU (%)

SEEG AR AUC (%)
0.1 0.2 0.3 0.4 0.5 AVG
N TARAR 8.09 5.88 4,63 1.91 1.23 4,348 86.07
A LLM £ g 12.1 9.19 6.77 453 1.64 6.846 86.92
NTAR + LLM Ak 14.45 10.36 7.59 4.45 2.20 7.81 87.75

Table 3. Ablation experiment results of key modules

3. KFIEHRUHA SN AR

HPE Gated Anomaly Weight Teacher Score AUC (%) AP (%)
85.94 27.02
\ 87.02 33.49
\ \ 87.02 36.30
\ 87.44 36.72
x/ S S \ 87.75 39.61

B, BATERS LLM ERaid Mg 40 HPE J5, RALERTE ks B BE R e, 7P
MAP@IoU $27t % 7.81%, AUC 1A% 87.75%. iX— 45 RIGIUE | 4 MAiE LA W5 Z 4518 Ly R 2 1] (1) B
AME, AIGIR T R R RIARE ), MARTE TSR IR E T, MRS TR RS M
D 5| 3 P O B TR A SR AL 1 S N AT SE R SO

5.3. XEEBRERM SN 5| SHHISHT

N T RGN MG UE A SC T R AT SR BEEH A 2, A SCHE UCF-Crime 4l 4 B REIT 1Rk s
By, SEgSE R 3 FN.

% 3 B TR I AR B AR RE AR L, H AL FE Hybrid Prompt Ensemble.
Anomaly Weight Adjuster LA/ Teacher Score 5| 3#Lil. B SGEAR GI ARG A H B E b, B
FET CLIP RAAESRI P 55 e B LIR R Ar 25 BEAT I 50 AUC Oy 85.94%, 1T AP X 27.02%. X —4 5%
B, 40 MIL HEZSTEMIZE 5 @ 1 THEF T T AR A A PR, 75 5 52 B o bR 28 1) 52 o

TR G N & ORBE I fE SRR R 2L AR T H— SR a3 . 1%k HPE BB & 5t
TR SCERARE S, (AR AR R AUC (AR, AP RS EHRAR T, IRIE T 2 URIE U s
BT A BNE. b5, 51\ Gated (WA - SCAKHIERE T 1 IRL&) )5, ALK AP 15 21— 127t
fH AUC FEARMRFEAAS, RINXBP E TG T WG 5 5 AU 0 X 1, i dERRIng 7 K68 /1. ik — 4
% Anomaly Weight Adjuster J&, #5578 Bef% 50N S AR T FUIMESCREMT, AT BT 85 I B ZRmde e it .
%, {E5|] N\ Teacher Score 1E Mgl 7 A5 FE eI Jn, BEBUTE AUC 5 AP EIEUS B LG A, JoiE 74K
YU 51 S AL A 2 0 ) g s BTG 38R S SR T TR P A R

6. &t
bty FIRSZIGLE AT LLF Y, SAGE-VAD fERCURIERE . CACHE WAL, SCM I3 DL S N 5] S84
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EMEEZ AN R — S . RELRE R Llii— 2K SAGE-VAD f£ AUC. AP K&
MAP@IoU %R s - B B T RCRIR B B K, I0IE T A SO IAE R 22 I35 N a2t 5210 fg
BHYAE UCF-Crime 5 XD-Violence &5 A JF R H5 45 E 73 mlHAS T AUC y 87.75%LA & AP 4y 85.08%,
FHEL Baseline AU RER T R MIMRAL . 5 2L AT A SLIE 40 A mT DL — D3R8, SRR B S,
MR TR A, BN+ 5 5 B AR Z ML R T R aE G R, I R T T B A7 5 26 %
Y N B S H R S A e

E&WE

A2 TR 2024 QAT RITE BB, BiH%5: 24511103302.
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